当前位置: X-MOL 学术Small › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ultra-Stable Freestanding Lipid Membrane Array: Direct Visualization of Dynamic Membrane Remodeling with Cholesterol Transport and Enzymatic Reactions.
Small ( IF 13.0 ) Pub Date : 2020-09-13 , DOI: 10.1002/smll.202002541
Hyun-Ro Lee 1 , Yohan Lee 1 , Seung Soo Oh 2 , Siyoung Q Choi 1
Affiliation  

Cell membranes actively change their local compositions, serving essential biological processes such as cellular signaling and endocytosis. Although membrane dynamics is vital in the cellular functions, the complexity of natural membranes has made its fundamental understanding and systematic assessment difficult. Here, a powerful artificial membrane system is developed for real‐time visualization of the spatiotemporal dynamics of membrane remodeling. Through well‐defined air/oil/water interfaces on grid holes, tens of planar lipid bilayer membranes are easily created, and their reproducibility, controllability, and generality are highlighted. The freestanding membranes are large but also highly stable, facilitating direct long‐term monitoring of dynamic membrane reconstitution caused by external stimuli. As an example to demonstrate the superiority of this membrane system, the effect of cholesterol trafficking, which significantly affects biophysical properties of cell membranes, is investigated at different membrane compositions. Cholesterol transport into and out of the membranes at different rates causes anomalous lipid arrangements through cholesterol‐mediated phase transitions and decomposition, which have never been witnessed before. Furthermore, enzyme‐induced membrane dynamics is successfully shown in this platform; sphingomyelinases locally generate asymmetry between two membrane leaflets. This technique is broadly applicable for exploring the membrane heterogeneity under various membrane‐based reactions, providing valuable insight into the membrane dynamics.

中文翻译:

超稳定的独立脂质膜阵列:通过胆固醇转运和酶促反应进行动态膜重塑的直接可视化。

细胞膜积极地改变其局部组成,从而为诸如细胞信号转导和内吞作用等基本生物学过程服务。尽管膜动力学在细胞功能中至关重要,但是天然膜的复杂性使得其基本理解和系统评估变得困难。在这里,开发了功能强大的人工膜系统,用于实时可视化膜重塑的时空动力学。通过在网格孔上定义明确的空气/油/水界面,可以轻松创建数十个平面脂质双层膜,并突出显示其可重复性,可控制性和通用性。独立膜较大,但高度稳定,有利于长期直接监测由外部刺激引起的动态膜重构。作为证明该膜系统优越性的一个例子,在不同的膜组成下研究了胆固醇运输的作用,该作用显着影响细胞膜的生物物理特性。胆固醇以不同的速率进入和流出膜会导致胆固醇介导的相变和分解,从而导致脂质排列异常,这是前所未有的。此外,该平台成功显示了酶诱导的膜动力学。鞘磷脂酶在两个膜小叶之间局部产生不对称性。这项技术广泛适用于探索各种基于膜的反应下的膜异质性,从而提供了对膜动力学的宝贵见解。在不同的膜组成下研究了显着影响细胞膜生物物理特性的化合物。胆固醇以不同的速率进入和流出膜会导致胆固醇介导的相变和分解,从而导致脂质排列异常,这是前所未有的。此外,该平台成功显示了酶诱导的膜动力学。鞘磷脂酶在两个膜小叶之间局部产生不对称性。这项技术广泛适用于探索各种基于膜的反应下的膜异质性,从而提供了对膜动力学的宝贵见解。在不同的膜组成下研究了显着影响细胞膜生物物理特性的化合物。胆固醇以不同的速率进入和流出膜会导致胆固醇介导的相变和分解,从而导致脂质排列异常,这是前所未有的。此外,该平台成功显示了酶诱导的膜动力学。鞘磷脂酶在两个膜小叶之间局部产生不对称性。这项技术广泛适用于探索各种基于膜的反应下的膜异质性,从而提供了对膜动力学的宝贵见解。胆固醇以不同的速率进入和流出膜会导致胆固醇介导的相变和分解,从而导致脂质排列异常,这是前所未有的。此外,该平台成功显示了酶诱导的膜动力学。鞘磷脂酶在两个膜小叶之间局部产生不对称性。这项技术广泛适用于探索各种基于膜的反应下的膜异质性,从而提供了对膜动力学的宝贵见解。胆固醇以不同的速率进入和流出膜会导致胆固醇介导的相变和分解,从而导致脂质排列异常,这是前所未有的。此外,该平台成功显示了酶诱导的膜动力学。鞘磷脂酶在两个膜小叶之间局部产生不对称性。这项技术广泛适用于探索各种基于膜的反应下的膜异质性,从而提供了对膜动力学的宝贵见解。
更新日期:2020-10-08
down
wechat
bug