石墨烯最初于1962年在电子显微镜下观察到,并于2004年重新发现,是一种新兴的碳晶形式。石墨烯被称为最薄的已知材料,是一种原子厚度的材料,并获得了诺贝尔奖。获奖材料具有出色的机械,热和电性能,使其成为工程领域最受欢迎的材料之一。由于其独特和非常规的二维结构,它具有独特的线性能带,就其他材料的常规抛物能带而言,这是非常不寻常的。石墨烯的二维结构与两分量波函数(对于三角形量子点(TQD))相关,其含义是晶格对称性,可以根据克莱因悖论进行解释。本文介绍了石墨烯表征的结构研究和技术。接下来是关于流变学背景的讨论,该背景在石墨烯的电学,机械和热学性质研究中起着至关重要的作用。讨论了第二个Piola-Kirchhoff应力的特殊概念。随后的讨论着重于石墨烯的合成方法。最后,我们介绍了石墨烯在各种间接工程领域的应用,例如医疗保健,石墨烯在“毒性研究”中的应用。石墨烯的广泛普及归因于其优异的机械,热和电性能,其结果是在过去的十年中它在众多应用中得到了广泛使用,碳纳米管是最著名的例子。接下来是关于流变学背景的讨论,该背景在石墨烯的电学,机械和热学性质研究中起着至关重要的作用。讨论了第二个Piola-Kirchhoff应力的特殊概念。随后的讨论着重于石墨烯的合成方法。最后,我们介绍了石墨烯在各种间接工程领域的应用,例如医疗保健,石墨烯在“毒性研究”中的应用。石墨烯的广泛普及归因于其优异的机械,热和电性能,其结果是在过去的十年中它在众多应用中得到了广泛使用,碳纳米管是最著名的例子。接下来是关于流变学背景的讨论,该背景在石墨烯的电学,机械和热学性质研究中起着至关重要的作用。讨论了第二个Piola-Kirchhoff应力的特殊概念。随后的讨论着重于石墨烯的合成方法。最后,我们介绍了石墨烯在各种间接工程领域的应用,例如医疗保健,石墨烯在“毒性研究”中的应用。石墨烯的广泛普及归因于其优异的机械,热和电性能,其结果是在过去的十年中它在众多应用中得到了广泛使用,碳纳米管是最著名的例子。和热性能。讨论了第二个Piola-Kirchhoff应力的特殊概念。随后的讨论着重于石墨烯的合成方法。最后,我们介绍了石墨烯在各种间接工程领域的应用,例如医疗保健,石墨烯在“毒性研究”中的应用。石墨烯的广泛普及归因于其优异的机械,热和电性能,其结果是在过去的十年中它在众多应用中得到了广泛使用,碳纳米管是最著名的例子。和热性能。讨论了第二个Piola-Kirchhoff应力的特殊概念。随后的讨论着重于石墨烯的合成方法。最后,我们介绍了石墨烯在各种间接工程领域的应用,例如医疗保健,石墨烯在“毒性研究”中的应用。石墨烯的广泛普及归因于其优异的机械,热和电性能,其结果是在过去的十年中它在众多应用中得到了广泛使用,其中碳纳米管就是最著名的例子。
"点击查看英文标题和摘要"
State-of-the-art advancements in studies and applications of graphene: a comprehensive review
Graphene, originally observed under electron microscope in 1962 and rediscovered in 2004, is a newly emerging crystalline form of carbon. Known as the thinnest known material, graphene, a one-atom-thick and a Nobel Prize Winning material has outstanding mechanical, thermal, and electrical properties, making it one of the most sought-after materials in engineering domain. Owing to its peculiar and unconventional two-dimensional structure, it has unique linear energy bands which is very unusual as far as conventional parabolic energy bands of other materials are concerned. The two-dimensional structure of graphene is associated with a two-component wave-function (for triangular quantum-dots (TQD)), implication of which is the lattice symmetry which can be explained on the basis of Klein's paradox. This article presents the structural study and techniques for characterization of graphene. It is followed by the discussions on the rheological background which plays a crucial role in the study of graphene along with its electrical, mechanical, and thermal properties. A peculiar concept of second Piola-Kirchhoff stress is discussed. Subsequent discussions emphasize the synthesis methods for graphene. Finally, we present the applications of graphene in various indirect engineering domains like healthcare, use of graphene for ‘Toxicity Studies’. The widespread popularity of graphene is attributed to its excellent mechanical, thermal, and electrical properties, the result of which is its extensive use in numerous applications over the last decade, carbon nanotubes being the prominent example.