当前位置:
X-MOL 学术
›
Polym. Test.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Basalt fibre-reinforced high density polyethylene composite development using the twin screw extrusion process
Polymer Testing ( IF 5.0 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.polymertesting.2020.106467 Onuh Adole , Lorna Anguilano , Timothy Minton , James Campbell , Lavelle Sean , Samaras Valisios , Karnik Tarverdi
Polymer Testing ( IF 5.0 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.polymertesting.2020.106467 Onuh Adole , Lorna Anguilano , Timothy Minton , James Campbell , Lavelle Sean , Samaras Valisios , Karnik Tarverdi
Abstract Offshore renewable energy can lead the way towards sustainable energy harvesting and support the achievement of the CO2 reduction target by 2030. To achieve this goal it is necessary to decrease the manufacturing and deployment cost of the offshore devices. This paper focusses on the mechanical, chemical and microstructural assessment of a novel high density polyethylene (HDPE) reinforced with short basalt fibres for potential application as a hull material for wave energy devices. The choice of short fibres ensures the new composite can utilise existing low cost manufacturing methods for HDPE structures. In particular this study compares the properties of material with a recycled HDPE matrix with the properties of a material using a virgin HDPE matrix. The mechanical properties achieved by the novel composites exceed an improvement of ~300% in the properties of the monolithic polymer hence indicating the potential of this material, both for recycled and virgin HDPE. Furthermore, exploration in detail of the interaction fibres/matrix indicated the dynamic reaction between coupling agent and polymeric matrix showing the formation of molecular bonding perpendicular to the fibres, hence enhancing a 3D network that further increases the reinforcement abilities of the fibres.
中文翻译:
采用双螺杆挤出工艺开发玄武岩纤维增强高密度聚乙烯复合材料
摘要 海上可再生能源可以引领可持续能源收集之路,支持到2030年实现二氧化碳减排目标。为实现这一目标,必须降低海上设备的制造和部署成本。本文重点介绍用玄武岩短纤维增强的新型高密度聚乙烯 (HDPE) 的机械、化学和微观结构评估,其潜在应用为波浪能装置的船体材料。短纤维的选择确保了新复合材料可以利用现有的低成本制造 HDPE 结构的方法。特别是,本研究比较了使用回收 HDPE 基质的材料的特性与使用原始 HDPE 基质的材料的特性。新型复合材料实现的机械性能超过了整体聚合物性能约 300% 的改进,因此表明这种材料对于回收和原始 HDPE 的潜力。此外,对相互作用纤维/基质的详细探索表明偶联剂和聚合物基质之间的动态反应显示了垂直于纤维的分子键的形成,从而增强了 3D 网络,进一步提高了纤维的增强能力。
更新日期:2020-11-01
中文翻译:
采用双螺杆挤出工艺开发玄武岩纤维增强高密度聚乙烯复合材料
摘要 海上可再生能源可以引领可持续能源收集之路,支持到2030年实现二氧化碳减排目标。为实现这一目标,必须降低海上设备的制造和部署成本。本文重点介绍用玄武岩短纤维增强的新型高密度聚乙烯 (HDPE) 的机械、化学和微观结构评估,其潜在应用为波浪能装置的船体材料。短纤维的选择确保了新复合材料可以利用现有的低成本制造 HDPE 结构的方法。特别是,本研究比较了使用回收 HDPE 基质的材料的特性与使用原始 HDPE 基质的材料的特性。新型复合材料实现的机械性能超过了整体聚合物性能约 300% 的改进,因此表明这种材料对于回收和原始 HDPE 的潜力。此外,对相互作用纤维/基质的详细探索表明偶联剂和聚合物基质之间的动态反应显示了垂直于纤维的分子键的形成,从而增强了 3D 网络,进一步提高了纤维的增强能力。