当前位置:
X-MOL 学术
›
Part. Part. Syst. Charact.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Harnessing Calcium‐Oxalate‐ (CaOx‐) Nanocrystal‐Induced Prodeath Autophagy for Attenuating Human Renal Proximal Tubular Epithelial Cell Injury
Particle & Particle Systems Characterization ( IF 2.7 ) Pub Date : 2019-06-12 , DOI: 10.1002/ppsc.201900083 Yang Chen 1, 2, 3 , Pengfei Wei 4 , Jialin Meng 1, 2, 3 , Song Fan 1, 2, 3 , Yanbin Zhang 5 , Junhua Xi 5 , Chaozhao Liang 1, 2, 3 , Li Zhang 1, 2, 3 , Zongyao Hao 1, 2, 3
Particle & Particle Systems Characterization ( IF 2.7 ) Pub Date : 2019-06-12 , DOI: 10.1002/ppsc.201900083 Yang Chen 1, 2, 3 , Pengfei Wei 4 , Jialin Meng 1, 2, 3 , Song Fan 1, 2, 3 , Yanbin Zhang 5 , Junhua Xi 5 , Chaozhao Liang 1, 2, 3 , Li Zhang 1, 2, 3 , Zongyao Hao 1, 2, 3
Affiliation
Calcium oxalate (CaOx) stone is the most common type of kidney stone, with a formation process comprising supersaturation, nucleation, growth, aggregation to crystals, and adhesion on renal tubular epithelial cells. CaOx stones generally lead to renal injury; however, the underlying mechanism remains poorly understood. Accumulating evidence suggests that nanosized materials could induce much greater toxicity than bulk materials with the same components. As aggregation to nanocrystals is necessary to form CaOx stones and nanocrystals have been widely reported to elicit either prodeath or prosurvival autophagy, the aim is to address the precise role of autophagy in CaOx‐ nanocrystal‐induced cytotoxicity. Clinical CaOx stones from patients are collected followed by ball milling. As a result, CaOx nanocrystals significantly reduce renal cell viability in a dose‐ and time‐dependent manner. Further study shows that CaOx nanocrystals possess an autophagy‐inducing capacity and autophagic flux is complete. Autophagy abrogation by specific chemical inhibitor wortmannin or chloroquine obviously attenuates cytotoxicity, strongly suggesting that prodeath autophagy contributes to CaOx nanocrystals‐elicited cytotoxicity. Finally, it is revealed that autophagy is an essential signaling pathway participating in apoptosis regulation. Collectively, the findings demonstrate the role of autophagy in CaOx‐nanocrystal‐elicited cytotoxicity, and harnessing autophagy can be helpful to design promising strategies for attenuating kidney injury in nephrolithiasis.
中文翻译:
利用草酸钙(CaOx)纳米晶诱导的前代自噬减轻人肾近端肾小管上皮细胞的损伤
草酸钙(CaOx)结石是最常见的肾结石类型,其形成过程包括过饱和,成核,生长,晶体聚集以及在肾小管上皮细胞上的粘附。CaOx结石通常会导致肾脏损伤;但是,其基本机制仍知之甚少。越来越多的证据表明,与具有相同成分的散装材料相比,纳米材料的毒性要大得多。由于聚集到纳米晶体是形成CaOx结石所必需的,并且已经广泛报道了纳米晶体会引起死亡或生存自噬,因此目的是解决自噬在CaOx纳米晶体诱导的细胞毒性中的确切作用。收集患者的临床CaOx结石,然后进行球磨。结果是,CaOx纳米晶体以剂量和时间依赖性方式显着降低肾细胞活力。进一步的研究表明,CaOx纳米晶体具有自噬诱导能力,并且自噬通量是完整的。特定化学抑制剂渥曼青霉素或氯喹的自噬消除明显减弱了细胞毒性,强烈表明前代自噬有助于CaOx纳米晶体引起的细胞毒性。最后,揭示了自噬是参与细胞凋亡调节的重要信号通路。总的来说,这些发现表明自噬在CaOx纳米晶体引起的细胞毒性中的作用,利用自噬可以帮助设计减轻肾结石病中肾脏损伤的有前途的策略。进一步的研究表明,CaOx纳米晶体具有自噬诱导能力,并且自噬通量是完整的。特定化学抑制剂渥曼青霉素或氯喹的自噬消除明显减弱了细胞毒性,强烈表明前代自噬有助于CaOx纳米晶体引起的细胞毒性。最后,揭示了自噬是参与细胞凋亡调节的重要信号通路。总的来说,这些发现表明自噬在CaOx纳米晶体引起的细胞毒性中的作用,利用自噬可以帮助设计减轻肾结石病中肾脏损伤的有前途的策略。进一步的研究表明,CaOx纳米晶体具有自噬诱导能力,并且自噬通量是完整的。特定化学抑制剂渥曼青霉素或氯喹的自噬消除明显减弱了细胞毒性,强烈表明前代自噬有助于CaOx纳米晶体引起的细胞毒性。最后,揭示了自噬是参与细胞凋亡调节的重要信号通路。总的来说,这些发现表明自噬在CaOx纳米晶引起的细胞毒性中的作用,利用自噬可以帮助设计减轻肾结石病中肾脏损伤的有前途的策略。有力地表明,前代自噬有助于CaOx纳米晶体引起的细胞毒性。最后,揭示了自噬是参与细胞凋亡调节的重要信号通路。总的来说,这些发现表明自噬在CaOx纳米晶体引起的细胞毒性中的作用,利用自噬可以帮助设计减轻肾结石病中肾脏损伤的有前途的策略。强烈表明,前代自噬有助于CaOx纳米晶体引起的细胞毒性。最后,揭示了自噬是参与细胞凋亡调节的重要信号通路。总的来说,这些发现表明自噬在CaOx纳米晶体引起的细胞毒性中的作用,利用自噬可以帮助设计减轻肾结石病中肾脏损伤的有前途的策略。
更新日期:2019-06-12
中文翻译:
利用草酸钙(CaOx)纳米晶诱导的前代自噬减轻人肾近端肾小管上皮细胞的损伤
草酸钙(CaOx)结石是最常见的肾结石类型,其形成过程包括过饱和,成核,生长,晶体聚集以及在肾小管上皮细胞上的粘附。CaOx结石通常会导致肾脏损伤;但是,其基本机制仍知之甚少。越来越多的证据表明,与具有相同成分的散装材料相比,纳米材料的毒性要大得多。由于聚集到纳米晶体是形成CaOx结石所必需的,并且已经广泛报道了纳米晶体会引起死亡或生存自噬,因此目的是解决自噬在CaOx纳米晶体诱导的细胞毒性中的确切作用。收集患者的临床CaOx结石,然后进行球磨。结果是,CaOx纳米晶体以剂量和时间依赖性方式显着降低肾细胞活力。进一步的研究表明,CaOx纳米晶体具有自噬诱导能力,并且自噬通量是完整的。特定化学抑制剂渥曼青霉素或氯喹的自噬消除明显减弱了细胞毒性,强烈表明前代自噬有助于CaOx纳米晶体引起的细胞毒性。最后,揭示了自噬是参与细胞凋亡调节的重要信号通路。总的来说,这些发现表明自噬在CaOx纳米晶体引起的细胞毒性中的作用,利用自噬可以帮助设计减轻肾结石病中肾脏损伤的有前途的策略。进一步的研究表明,CaOx纳米晶体具有自噬诱导能力,并且自噬通量是完整的。特定化学抑制剂渥曼青霉素或氯喹的自噬消除明显减弱了细胞毒性,强烈表明前代自噬有助于CaOx纳米晶体引起的细胞毒性。最后,揭示了自噬是参与细胞凋亡调节的重要信号通路。总的来说,这些发现表明自噬在CaOx纳米晶体引起的细胞毒性中的作用,利用自噬可以帮助设计减轻肾结石病中肾脏损伤的有前途的策略。进一步的研究表明,CaOx纳米晶体具有自噬诱导能力,并且自噬通量是完整的。特定化学抑制剂渥曼青霉素或氯喹的自噬消除明显减弱了细胞毒性,强烈表明前代自噬有助于CaOx纳米晶体引起的细胞毒性。最后,揭示了自噬是参与细胞凋亡调节的重要信号通路。总的来说,这些发现表明自噬在CaOx纳米晶引起的细胞毒性中的作用,利用自噬可以帮助设计减轻肾结石病中肾脏损伤的有前途的策略。有力地表明,前代自噬有助于CaOx纳米晶体引起的细胞毒性。最后,揭示了自噬是参与细胞凋亡调节的重要信号通路。总的来说,这些发现表明自噬在CaOx纳米晶体引起的细胞毒性中的作用,利用自噬可以帮助设计减轻肾结石病中肾脏损伤的有前途的策略。强烈表明,前代自噬有助于CaOx纳米晶体引起的细胞毒性。最后,揭示了自噬是参与细胞凋亡调节的重要信号通路。总的来说,这些发现表明自噬在CaOx纳米晶体引起的细胞毒性中的作用,利用自噬可以帮助设计减轻肾结石病中肾脏损伤的有前途的策略。