当前位置:
X-MOL 学术
›
ACS Appl. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
BiFeO3-Based Flexible Ferroelectric Memristors for Neuromorphic Pattern Recognition
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2020-03-19 00:00:00 , DOI: 10.1021/acsaelm.0c00094 Haoyang Sun 1 , Zhen Luo 1 , Letian Zhao 1 , Chuanchuan Liu 1 , Chao Ma 1 , Yue Lin 1 , Guanyin Gao 1 , Zhiwei Chen 1 , Zhiwei Bao 1 , Xi Jin 1 , Yuewei Yin 1 , Xiaoguang Li 1, 2
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2020-03-19 00:00:00 , DOI: 10.1021/acsaelm.0c00094 Haoyang Sun 1 , Zhen Luo 1 , Letian Zhao 1 , Chuanchuan Liu 1 , Chao Ma 1 , Yue Lin 1 , Guanyin Gao 1 , Zhiwei Chen 1 , Zhiwei Bao 1 , Xi Jin 1 , Yuewei Yin 1 , Xiaoguang Li 1, 2
Affiliation
Flexible ferroelectric devices have been a hot-spot topic because of their potential wearable applications as nonvolatile memories and sensors. Here, high-quality (111)-oriented BiFeO3 ferroelectric films are grown on flexible mica substrates through an appropriate design of SrRuO3/BaTiO3 double buffer layers. BiFeO3 exhibits the largest polarization (saturated polarization Ps ≈ 100 μC/cm2, remnant polarization Pr ≈ 97 μC/cm2) among all the reported flexible ferroelectric films, and ferroelectric polarization is very stable in 104 bending cycles under 5 mm radius. Accordingly, the ferroelectric memristor behaviors are demonstrated with continuously tunable resistances, and thus, the functionality of spike-timing-dependent plasticity is achieved, indicating the capability of flexible BiFeO3-based memristors as solid synaptic devices. Moreover, in artificial neural network simulations based on the experimental characteristics of the memristor, a high recognition accuracy of ∼90% on handwritten digits is obtained through online supervised learning. These results highlight the potential wearable applications of flexible ferroelectric memristors for data storage and computing.
中文翻译:
基于BiFeO 3的柔性铁电忆阻器用于神经形态识别
柔性铁电设备由于其作为非易失性存储器和传感器的潜在可穿戴应用而成为热门话题。在此,通过适当设计SrRuO 3 / BaTiO 3双缓冲层,在柔性云母基板上生长了高质量(111)取向的BiFeO 3铁电薄膜。的BiFeO 3件展品最大极化(饱和极化P小号≈100μC/厘米2,剩余极化P - [R ≈97μC/厘米2之间所有的)报告的柔性铁电体膜,和铁电偏振是在10非常稳定4半径5 mm以下的弯曲循环。因此,用连续可调的电阻证明了铁电忆阻器的行为,并因此实现了依赖于尖峰时间的可塑性的功能,表明了基于挠性的BiFeO 3的忆阻器作为固体突触装置的能力。此外,在基于忆阻器实验特性的人工神经网络仿真中,通过在线监督学习可以获得对手写数字的约90%的高识别精度。这些结果突出了柔性铁电忆阻器在数据存储和计算方面的潜在可穿戴应用。
更新日期:2020-03-19
中文翻译:
基于BiFeO 3的柔性铁电忆阻器用于神经形态识别
柔性铁电设备由于其作为非易失性存储器和传感器的潜在可穿戴应用而成为热门话题。在此,通过适当设计SrRuO 3 / BaTiO 3双缓冲层,在柔性云母基板上生长了高质量(111)取向的BiFeO 3铁电薄膜。的BiFeO 3件展品最大极化(饱和极化P小号≈100μC/厘米2,剩余极化P - [R ≈97μC/厘米2之间所有的)报告的柔性铁电体膜,和铁电偏振是在10非常稳定4半径5 mm以下的弯曲循环。因此,用连续可调的电阻证明了铁电忆阻器的行为,并因此实现了依赖于尖峰时间的可塑性的功能,表明了基于挠性的BiFeO 3的忆阻器作为固体突触装置的能力。此外,在基于忆阻器实验特性的人工神经网络仿真中,通过在线监督学习可以获得对手写数字的约90%的高识别精度。这些结果突出了柔性铁电忆阻器在数据存储和计算方面的潜在可穿戴应用。