Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Carbon-coated Sn2S3 hollow spheres as high performance anode materials for sodium-ion batteries
Carbon ( IF 10.5 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.carbon.2020.09.027 Gang Chen , Ximin Li , Tianbiao Zeng , Rui Han , Qian Wang
Carbon ( IF 10.5 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.carbon.2020.09.027 Gang Chen , Ximin Li , Tianbiao Zeng , Rui Han , Qian Wang
Abstract Sn-based sulfides are favorable anode materials for sodium-ion batteries (SIBs), in virtue of its high capacity, earth abundance of the constituent elements, and low cost. Sn2S3 possess an inherently high electrical conductivity (4.35 × 10−3 S cm−1) and a high theoretical capacity (1189 mA h g−1), which make it an excellent candidate material for SIB anodes. However, unlike the analogs SnS and SnS2, Sn2S3 has rarely been explored as a SIB anode due to the difficulties and complexities in its synthetic. Herein, we report the synthesis of carbon-coated Sn2S3 hollow spheres (Sn2S3@CHS) and explore its application as a SIB anode. The conductive carbon hollow spheres prevented the aggregation of Sn2S3 particles and mitigated cycling-induced strain. Furthermore, the Sn2S3 phase exhibited an intrinsic fast sodiation/de-sodiation kinetics. Owing to its unique structure, the cyclability and rate performance of Sn2S3@CHS were better than those of solid carbon-coated Sn2S3 nanoparticles (Sn2S3@CNP). At current densities of 0.1, 0.2, 0.5, and 2 A g−1, Sn2S3@CHS could deliver capacities of 645, 551, 413, and 229 mA h g−1, respectively, while the capacities of the solid Sn2S3@CNP were 271, 219, 170, and 54 mA h g−1, respectively. This study presents a new strategy in harvesting high capacity, fast-charge capabilities of tin sulfides for SIBs.
中文翻译:
碳包覆Sn2S3空心球作为钠离子电池的高性能负极材料
摘要 锡基硫化物具有容量高、组成元素丰富、成本低等优点,是钠离子电池(SIBs)的理想负极材料。Sn2S3 具有固有的高电导率(4.35 × 10-3 S cm-1)和高理论容量(1189 mA hg-1),使其成为 SIB 阳极的极好候选材料。然而,与类似物 SnS 和 SnS2 不同,由于其合成的困难和复杂性,Sn2S3 很少被用作 SIB 阳极。在此,我们报告了碳包覆的 Sn2S3 空心球(Sn2S3@CHS)的合成,并探索了其作为 SIB 阳极的应用。导电碳空心球阻止了 Sn2S3 颗粒的聚集并减轻了循环引起的应变。此外,Sn2S3 相表现出固有的快速钠化/脱钠动力学。由于其独特的结构,Sn2S3@CHS 的循环性能和倍率性能优于固体碳包覆的 Sn2S3 纳米粒子(Sn2S3@CNP)。在 0.1、0.2、0.5 和 2 A g-1 的电流密度下,Sn2S3@CHS 的容量分别为 645、551、413 和 229 mA hg-1,而固态 Sn2S3@CNP 的容量为 271 、219、170 和 54 mA hg-1,分别为。这项研究提出了一种新的策略,可以为 SIB 收集硫化锡的高容量、快速充电能力。和 54 mA hg-1,分别。这项研究提出了一种新的策略,可以为 SIB 收集硫化锡的高容量、快速充电能力。和 54 mA hg-1,分别。这项研究提出了一种新的策略,可以为 SIB 收集硫化锡的高容量、快速充电能力。
更新日期:2021-01-01
中文翻译:
碳包覆Sn2S3空心球作为钠离子电池的高性能负极材料
摘要 锡基硫化物具有容量高、组成元素丰富、成本低等优点,是钠离子电池(SIBs)的理想负极材料。Sn2S3 具有固有的高电导率(4.35 × 10-3 S cm-1)和高理论容量(1189 mA hg-1),使其成为 SIB 阳极的极好候选材料。然而,与类似物 SnS 和 SnS2 不同,由于其合成的困难和复杂性,Sn2S3 很少被用作 SIB 阳极。在此,我们报告了碳包覆的 Sn2S3 空心球(Sn2S3@CHS)的合成,并探索了其作为 SIB 阳极的应用。导电碳空心球阻止了 Sn2S3 颗粒的聚集并减轻了循环引起的应变。此外,Sn2S3 相表现出固有的快速钠化/脱钠动力学。由于其独特的结构,Sn2S3@CHS 的循环性能和倍率性能优于固体碳包覆的 Sn2S3 纳米粒子(Sn2S3@CNP)。在 0.1、0.2、0.5 和 2 A g-1 的电流密度下,Sn2S3@CHS 的容量分别为 645、551、413 和 229 mA hg-1,而固态 Sn2S3@CNP 的容量为 271 、219、170 和 54 mA hg-1,分别为。这项研究提出了一种新的策略,可以为 SIB 收集硫化锡的高容量、快速充电能力。和 54 mA hg-1,分别。这项研究提出了一种新的策略,可以为 SIB 收集硫化锡的高容量、快速充电能力。和 54 mA hg-1,分别。这项研究提出了一种新的策略,可以为 SIB 收集硫化锡的高容量、快速充电能力。