Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Turing–Hopf bifurcations in a predator–prey model with herd behavior, quadratic mortality and prey-taxis
Physica A: Statistical Mechanics and its Applications ( IF 2.8 ) Pub Date : 2018-01-04 , DOI: 10.1016/j.physa.2018.01.006 Xia Liu , Tonghua Zhang , Xinzhu Meng , Tongqian Zhang
中文翻译:
具有种群行为,二次死亡率和捕食性的捕食者-被捕食模型中的图灵-霍夫分叉
更新日期:2018-01-04
Physica A: Statistical Mechanics and its Applications ( IF 2.8 ) Pub Date : 2018-01-04 , DOI: 10.1016/j.physa.2018.01.006 Xia Liu , Tonghua Zhang , Xinzhu Meng , Tongqian Zhang
In this paper, we propose a predator–prey model with herd behavior and prey-taxis. Then, we analyze the stability and bifurcation of the positive equilibrium of the model subject to the homogeneous Neumann boundary condition. By using an abstract bifurcation theory and taking prey-tactic sensitivity coefficient as the bifurcation parameter, we obtain a branch of stable nonconstant solutions bifurcating from the positive equilibrium. Our results show that prey-taxis can yield the occurrence of spatial patterns.
中文翻译:
具有种群行为,二次死亡率和捕食性的捕食者-被捕食模型中的图灵-霍夫分叉
在本文中,我们提出了一种具有群体行为和捕食性的捕食者-猎物模型。然后,我们分析了模型在齐次Neumann边界条件下的正平衡的稳定性和分支。通过使用抽象的分叉理论,并以食饵-战术敏感性系数作为分叉参数,我们得到了一个由正平衡分叉的稳定的非恒定解的分支。我们的结果表明,猎物出租车可以产生空间格局。