当前位置: X-MOL 学术ACS Appl. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Progress of Electrochemical Hydrogen Peroxide Synthesis over Single Atom Catalysts
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2020-07-09 00:00:00 , DOI: 10.1021/acsmaterialslett.0c00189
Jiajian Gao 1 , Bin Liu 1
Affiliation  

The electrochemical oxygen reduction reaction (ORR) via the two-electron pathway provides a promising approach for the direct synthesis of hydrogen peroxide (H2O2) and its on-site utilizations. The effective electrocatalyst is one of the key factors determining the future applications of this technology. In recent years, various catalysts, such as pristine carbon materials, modified carbon materials (oxidized or heteroatom doped such as nitrogen, fluorine, or sulfur doped), gold, or mercury alloyed palladium or platinum nanoparticles, as well as transition metal single atom catalysts (SACs) have been reported to effectively catalyze the H2O2 production via the two-electron ORR process. Among these candidates, SACs with 100% atom utilization and well-defined active centers attracted extra attention due to their high catalytic performance for H2O2 synthesis. In this review, the thermodynamics, oxygen molecular activation, and theoretical screening and prediction of SACs for electrochemical H2O2 synthesis are discussed. The catalytic performance, reaction kinetics and mechanism of SACs together with electrochemical devices for H2O2 synthesis via the two-electron ORR are summarized. It is hoped that this contribution can offer a comprehensive reference for the progress of SACs in H2O2 electrochemical production process.

中文翻译:

单原子催化剂上电化学过氧化氢的研究进展

通过双电子途径的电化学氧还原反应(ORR)为过氧化氢(H 2 O 2)的直接合成及其现场利用提供了一种有前途的方法。有效的电催化剂是决定该技术未来应用的关键因素之一。近年来,各种催化剂,例如原始碳材料,改性碳材料(氧化或杂原子掺杂,例如氮,氟或硫掺杂),金或汞合金钯或铂纳米颗粒,以及过渡金属单原子催化剂(SAC)已被报道有效催化H 2 O 2通过双电子ORR工艺进行生产。在这些候选物中,具有100%原子利用率和明确定义的活性中心的SAC由于其对H 2 O 2合成的高催化性能而引起了更多关注。在这篇综述中,讨论了用于电化学H 2 O 2合成的热力学,氧分子活化以及SAC的理论筛选和预测。总结了SAC的催化性能,反应动力学和机理,以及通过双电子ORR合成H 2 O 2的电化学装置。希望这一贡献能够为SAC在H 2 O 2中的进展提供全面的参考。 电化学生产过程。
更新日期:2020-07-09
down
wechat
bug