当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Unanticipated Mechanism of the Trimethylsilyl Motif in Electrolyte Additives on Nickel-Rich Cathodes in Lithium-Ion Batteries.
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-09-04 , DOI: 10.1021/acsami.0c11996 Min Woo Park 1 , Sewon Park 1 , Nam-Soon Choi 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-09-04 , DOI: 10.1021/acsami.0c11996 Min Woo Park 1 , Sewon Park 1 , Nam-Soon Choi 1
Affiliation
The introduction of a trimethylsilyl (TMS) motif in electrolyte additives for lithium-ion batteries is regarded as an effectual approach to remove corrosive hydrofluoric acid (HF) that structurally and compositionally damages the electrode–electrolyte interface and gives rise to transition metal dissolution from the cathode. Herein, we present that electrolyte additives with TMS moieties lead to continued capacity loss of polycrystalline (PC)-LiNi0.8Co0.1Mn0.1O2 (NCM811) cathodes coupled with graphite anodes compared to additives without TMS as the cycle progresses. Through a comparative study using electrolyte additives with and without TMS moieties, it is revealed that the TMS group is prone to react with residual lithium compounds, in particular, lithium hydroxide (LiOH) on the PC-NCM811 cathode, and the resulting TMS-OH triggers the decomposition of PF5 created by the autocatalytic decomposition of LiPF6 that generates reactive species, namely, HF and POF3. This work aims to offer a way to build favorable interface structures for Ni-rich cathodes covered with residual lithium compounds through a study to figure out the roles of TMS moieties of electrolyte additives.
中文翻译:
锂离子电池中富镍阴极上的电解质添加剂中三甲基硅烷基的意外机理。
在锂离子电池的电解质添加剂中引入三甲基甲硅烷基(TMS)基序被认为是去除腐蚀性氢氟酸(HF)的有效方法,氢氟酸在结构和成分上会破坏电极-电解质的界面,并导致过渡金属从电池中溶解。阴极。本文中,我们提出具有TMS部分的电解质添加剂会导致多晶(PC)-LiNi 0.8 Co 0.1 Mn 0.1 O 2的容量持续损失(NCM811)阴极与石墨阳极的比较与不添加TMS的添加剂的比较(随着周期的进行)。通过使用具有和不具有TMS部分的电解质添加剂的比较研究,发现TMS基团易于与残留的锂化合物(特别是PC-NCM811阴极上的氢氧化锂(LiOH))反应,并与生成的TMS-OH反应触发由LiPF 6的自催化分解产生的PF 5分解,该LiPF 6生成反应性物质,即HF和POF 3。这项工作旨在通过研究找出电解质添加剂的TMS部分的作用,提供一种为残留镍化合物覆盖的富镍阴极建立有利的界面结构的方法。
更新日期:2020-09-30
中文翻译:
锂离子电池中富镍阴极上的电解质添加剂中三甲基硅烷基的意外机理。
在锂离子电池的电解质添加剂中引入三甲基甲硅烷基(TMS)基序被认为是去除腐蚀性氢氟酸(HF)的有效方法,氢氟酸在结构和成分上会破坏电极-电解质的界面,并导致过渡金属从电池中溶解。阴极。本文中,我们提出具有TMS部分的电解质添加剂会导致多晶(PC)-LiNi 0.8 Co 0.1 Mn 0.1 O 2的容量持续损失(NCM811)阴极与石墨阳极的比较与不添加TMS的添加剂的比较(随着周期的进行)。通过使用具有和不具有TMS部分的电解质添加剂的比较研究,发现TMS基团易于与残留的锂化合物(特别是PC-NCM811阴极上的氢氧化锂(LiOH))反应,并与生成的TMS-OH反应触发由LiPF 6的自催化分解产生的PF 5分解,该LiPF 6生成反应性物质,即HF和POF 3。这项工作旨在通过研究找出电解质添加剂的TMS部分的作用,提供一种为残留镍化合物覆盖的富镍阴极建立有利的界面结构的方法。