当前位置: X-MOL 学术ACS Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Decoding of Oxygen Network Distortion in a Layered High-Rate Anode by In Situ Investigation of a Single Microelectrode.
ACS Nano ( IF 15.8 ) Pub Date : 2020-09-02 , DOI: 10.1021/acsnano.0c04483
Lixiang Liu 1, 2, 3 , Jiawei Wang 1, 3 , Steffen Oswald 4 , Junping Hu 5 , Hongmei Tang 1 , Jinhui Wang 1 , Yin Yin 1 , Qiongqiong Lu 4 , Lifeng Liu 6 , Enrique Carbó-Argibay 6 , Shaozhuan Huang 7 , Haiyun Dong 1 , Libo Ma 1 , Feng Zhu 1 , Minshen Zhu 1 , Oliver G Schmidt 1, 2, 3, 8
Affiliation  

Sluggish conversion reactions severely impair the rate capability for lithium storage, which is the main disadvantage of the conversion-type anode materials. Here, the microplatform based on a single microelectrode is designed and utilized for the fundamental understanding of the conversion reaction. The kinetic-favorable layered structure of the anode material is on-site synthesized in the microplatform. The in situ characterization reveals that introducing an oxygen network distortion in the layered oxide anode effectively circumvents the severe passivation of the electrode material by lithium oxide, thus leading to highly reversible conversion reactions. As a result, the high-rate capability of the conversion-type anode materials is realized. The on-site synthesis strategy is further applied in the large-scale synthesis of nanomaterials for lithium-ion batteries. As such, oxide nanorods with the layered structure are synthesized by a facile chemical strategy, showing high rate performance (574 mAh g–1 at 10 A g–1). This work unveils the beneficial effect of oxygen network distortion in the layered anode for conversion reactions over cycling, thus providing an alternative strategy to enhance the rate capability of conversion-type anodes for lithium storage.

中文翻译:

通过单个微电极的原位研究对分层高速阳极中氧气网络畸变的解码。

缓慢的转化反应严重损害了锂储存的速率能力,这是转化型负极材料的主要缺点。在此,基于单个微电极的微平台被设计并用于对转化反应的基本理解。阳极材料的动力学有利的分层结构是在微平台上现场合成的。在原位表征表明,在层状氧化物阳极中引入氧网络畸变有效地避免了氧化锂对电极材料的严重钝化,从而导致高度可逆的转化反应。结果,实现了转化型负极材料的高倍率性能。现场合成策略进一步应用于锂离子电池纳米材料的大规模合成。这样,与分层结构氧化物纳米棒由一个浅显的化学策略合成,表现出高倍率性能(574毫安克-1以10 A G -1)。这项工作揭示了层状阳极中氧网络畸变对循环中转化反应的有益作用,从而提供了一种替代策略来增强转化型阳极用于锂存储的速率能力。
更新日期:2020-09-22
down
wechat
bug