当前位置:
X-MOL 学术
›
ACS Catal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Visible-Light-Driven Catalytic Reductive Carboxylation with CO2
ACS Catalysis ( IF 11.3 ) Pub Date : 2020-08-28 , DOI: 10.1021/acscatal.0c03127 Zhen Zhang 1, 2 , Jian-Heng Ye 2 , Tao Ju 2 , Li-Li Liao 2 , He Huang 2 , Yong-Yuan Gui 2, 3 , Wen-Jun Zhou 2, 4 , Da-Gang Yu 2
ACS Catalysis ( IF 11.3 ) Pub Date : 2020-08-28 , DOI: 10.1021/acscatal.0c03127 Zhen Zhang 1, 2 , Jian-Heng Ye 2 , Tao Ju 2 , Li-Li Liao 2 , He Huang 2 , Yong-Yuan Gui 2, 3 , Wen-Jun Zhou 2, 4 , Da-Gang Yu 2
Affiliation
Carbon dioxide (CO2) is an important C1 source for the generation of important carboxylic acids and derivatives. Stoichiometric and catalytic carboxylation of nucleophiles, including organometallic reagents, with CO2 has been widely investigated. Since many kinds of organometallic reagents are prepared from electrophiles, transition-metal-catalyzed direct carboxylation of diverse electrophiles with CO2 has attracted much attention with high step economy and user-friendly protocols. Although significant progress has been achieved, the use of stoichiometric metallic or pyrophoric reductants is common. The renaissance of photochemistry has seen numerous efforts devoted to light-driven carboxylation with CO2, which has become one of the most active directions in this field. In this Perspective, we summarize recent advances of visible-light-driven catalytic reductive carboxylation of diverse substrates, such as unsaturated hydrocarbons, organic (pseudo)halides, and imines, with CO2 in the presence of mild electron donors, including amines, Hantzsch esters, and formates. We highlight the mechanisms of such reactions, which can proceed in the presence or absence of a photoredox catalyst or a dual visible light photoredox/transition metal catalytic system. We also discuss the future of this field and offer some insight into the challenges that remain.
中文翻译:
可见光驱动的CO 2催化还原羧化
二氧化碳(CO 2)是重要的C1来源,用于生成重要的羧酸和衍生物。已经广泛研究了包括CO 2在内的亲核试剂(包括有机金属试剂)的化学计量和催化羧化反应。由于从亲电子试剂中制备了多种有机金属试剂,因此,过渡金属催化的各种亲电子试剂与CO 2的直接羧化反应以高度的步骤经济性和用户友好的方案引起了广泛的关注。尽管已经取得了重大进展,但是化学计量的金属或发火还原剂的使用是普遍的。光化学的复兴已经看到了许多致力于光驱动的CO 2羧化反应的努力。,它已成为该领域最活跃的方向之一。在此观点中,我们总结了在弱胺基电子给体(包括胺,Hantzsch)存在下,可见光驱动的各种底物(如不饱和烃,有机(伪)卤化物和亚胺)与CO 2的最新研究进展。酯和甲酸酯。我们重点介绍了这种反应的机制,可以在存在或不存在光氧化还原催化剂或双重可见光光氧化还原/过渡金属催化体系的情况下进行。我们还将讨论该领域的未来,并对仍然存在的挑战提供一些见识。
更新日期:2020-10-02
中文翻译:
可见光驱动的CO 2催化还原羧化
二氧化碳(CO 2)是重要的C1来源,用于生成重要的羧酸和衍生物。已经广泛研究了包括CO 2在内的亲核试剂(包括有机金属试剂)的化学计量和催化羧化反应。由于从亲电子试剂中制备了多种有机金属试剂,因此,过渡金属催化的各种亲电子试剂与CO 2的直接羧化反应以高度的步骤经济性和用户友好的方案引起了广泛的关注。尽管已经取得了重大进展,但是化学计量的金属或发火还原剂的使用是普遍的。光化学的复兴已经看到了许多致力于光驱动的CO 2羧化反应的努力。,它已成为该领域最活跃的方向之一。在此观点中,我们总结了在弱胺基电子给体(包括胺,Hantzsch)存在下,可见光驱动的各种底物(如不饱和烃,有机(伪)卤化物和亚胺)与CO 2的最新研究进展。酯和甲酸酯。我们重点介绍了这种反应的机制,可以在存在或不存在光氧化还原催化剂或双重可见光光氧化还原/过渡金属催化体系的情况下进行。我们还将讨论该领域的未来,并对仍然存在的挑战提供一些见识。