当前位置:
X-MOL 学术
›
ACS Appl. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Synthesis of a Nickel Single-Atom Catalyst Based on Ni–N4–xCx Active Sites for Highly Efficient CO2 Reduction Utilizing a Gas Diffusion Electrode
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2020-08-27 , DOI: 10.1021/acsaem.0c01283 Syed Asad Abbas 1, 2 , Jun Tae Song 3, 4 , Ying Chuan Tan 5 , Ki Min Nam 2 , Jihun Oh 5 , Kwang-Deog Jung 1
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2020-08-27 , DOI: 10.1021/acsaem.0c01283 Syed Asad Abbas 1, 2 , Jun Tae Song 3, 4 , Ying Chuan Tan 5 , Ki Min Nam 2 , Jihun Oh 5 , Kwang-Deog Jung 1
Affiliation
A Ni single-atom catalyst with Ni–N4–xCx active sites is prepared in a single pyrolysis step in which the Ni single atom is incorporated in the carbon framework through nitrogen and carbon coordination utilizing the ionothermal synthesis method. In comparison to the complicated synthesis procedures of single-atom catalysts, this method provides a general and facile method to obtain single-atom catalysts with an opportunity to synthesize catalysts at a large scale. The precursors used in this method such as adenine, fructose, and glucose are derived from the biomass which is the essential requirement for a green process. The synthetic procedure developed here enables tunable properties of the catalysts, such as the density of active sites and characteristics of the carbon framework. In this study, the catalytic properties of our materials are investigated for an electrochemical CO2 reduction reaction. The overall catalytic activity of the catalyst depends on the density of active sites, but the properties of the carbon framework also affect the intrinsic activity of the catalyst. From the commercial prospect, a Ni single-atom catalyst with a high density of Ni–N4–xCx active sites can achieve a current density of −300 mA cm–2 with a CO faradaic efficiency of 99.4% at an overpotential of 235 mV in a gas diffusion electrode cell system.
中文翻译:
基于Ni–N 4 – x C x活性位的镍单原子催化剂的合成,利用气体扩散电极可高效还原CO 2
具有Ni–N 4– x C x的Ni单原子催化剂在单个热解步骤中制备活性位点,其中利用离子热合成方法通过氮和碳配位将Ni单原子掺入碳骨架中。与单原子催化剂的复杂合成过程相比,该方法提供了一种通用且简便的方法来获得单原子催化剂,并有机会大规模合成催化剂。此方法中使用的前体(如腺嘌呤,果糖和葡萄糖)均来自生物质,这是绿色工艺的基本要求。这里开发的合成程序使催化剂具有可调的性能,例如活性位点的密度和碳骨架的特性。在这项研究中,我们的材料对电化学CO的催化性能进行了研究2还原反应。催化剂的总体催化活性取决于活性位点的密度,但是碳骨架的性质也影响催化剂的固有活性。从商业前景看,具有高Ni–N 4– x C x活性位点密度的Ni单原子催化剂可以实现-300 mA cm –2的电流密度,并且在过电势下的CO法拉第效率为99.4%。在气体扩散电极电池系统中为235 mV。
更新日期:2020-09-28
中文翻译:
基于Ni–N 4 – x C x活性位的镍单原子催化剂的合成,利用气体扩散电极可高效还原CO 2
具有Ni–N 4– x C x的Ni单原子催化剂在单个热解步骤中制备活性位点,其中利用离子热合成方法通过氮和碳配位将Ni单原子掺入碳骨架中。与单原子催化剂的复杂合成过程相比,该方法提供了一种通用且简便的方法来获得单原子催化剂,并有机会大规模合成催化剂。此方法中使用的前体(如腺嘌呤,果糖和葡萄糖)均来自生物质,这是绿色工艺的基本要求。这里开发的合成程序使催化剂具有可调的性能,例如活性位点的密度和碳骨架的特性。在这项研究中,我们的材料对电化学CO的催化性能进行了研究2还原反应。催化剂的总体催化活性取决于活性位点的密度,但是碳骨架的性质也影响催化剂的固有活性。从商业前景看,具有高Ni–N 4– x C x活性位点密度的Ni单原子催化剂可以实现-300 mA cm –2的电流密度,并且在过电势下的CO法拉第效率为99.4%。在气体扩散电极电池系统中为235 mV。