当前位置:
X-MOL 学术
›
ChemElectroChem
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Stabilizing Ni‐Rich LiNi0.92Co0.06Al0.02O2 Cathodes by Boracic Polyanion and Tungsten Cation Co‐Doping for High‐Energy Lithium‐Ion Batteries
ChemElectroChem ( IF 3.5 ) Pub Date : 2020-08-28 , DOI: 10.1002/celc.202000927 Zhenping Qiu 1 , Yelong Zhang 1 , Zheng Liu 1 , Yan Gao 1 , Jiaming Liu 2 , Qingguang Zeng 1
ChemElectroChem ( IF 3.5 ) Pub Date : 2020-08-28 , DOI: 10.1002/celc.202000927 Zhenping Qiu 1 , Yelong Zhang 1 , Zheng Liu 1 , Yan Gao 1 , Jiaming Liu 2 , Qingguang Zeng 1
Affiliation
Layered nickel‐rich transition metal oxide has been receiving much attention as high‐energy‐density cathode materials for rechargeable lithium‐ion batteries. However, the severe capacity fading caused by bulk structural degradation of Ni‐rich cathodes during lithiation/delithiation obstructs their commercialization. Herein, we modify the LiNi0.92Co0.06Al0.02O2 (NCA92) cathode materials by W6+ cation and BO33− polyanion co‐doping to improve the structural stability and upgrade the electrochemical reversibility. The co‐doped NCA92 materials show remarkably improved cycling stability at 1 C with a capacity retention of 93.4 % after 100 cycles, whereas the pristine cathodes exhibit poor capacity retention of 53.0 % and suffer severe structural deterioration. Further studies reveal that the particle fragmentation resulted from the inherent internal strain and the structural degradation upon cycling can be effectively mitigated by W6+ cation and BO33− polyanion co‐doping. Besides, W6+ and BO33− co‐doping could enlarge the interlayer spacing of NCA92, thus increasing lithium‐ion diffusion coefficient, which is conducive to enhancing the rate capability. The present work demonstrates that cationic‐anionic co‐doping is an effective strategy to maintain the structural stability of Ni‐rich cathode materials, and it promotes the development of stable cathode materials for high energy density lithium‐ion batteries.
中文翻译:
硼酸聚阴离子和钨阳离子共掺杂用于高能锂离子电池稳定富镍LiNi0.92Co0.06Al0.02O2阴极
层状富镍过渡金属氧化物作为可再充电锂离子电池的高能量密度阴极材料备受关注。但是,在锂化/脱锂过程中,富镍阴极的整体结构退化引起的严重容量衰减会阻碍其商业化。在这里,我们通过W 6+阳离子和BO 3 3-改性LiNi 0.92 Co 0.06 Al 0.02 O 2(NCA92)正极材料聚阴离子共掺杂可改善结构稳定性并提高电化学可逆性。共掺杂的NCA92材料在1 C下显示出显着改善的循环稳定性,在100次循环后的容量保持率为93.4%,而原始阴极的容量保持率仅为53.0%,并且结构严重恶化。进一步的研究表明,W 6+阳离子和BO 3 3-聚阴离子共掺杂可有效缓解内部固有应变和循环时结构降解引起的颗粒破碎。此外,W 6+和BO 3 3−共掺杂可以扩大NCA92的层间距,从而增加锂离子扩散系数,这有利于提高倍率能力。本研究表明,阳离子-阴离子共掺杂是保持富镍正极材料结构稳定性的有效策略,它促进了高能量密度锂离子电池稳定正极材料的开发。
更新日期:2020-09-23
中文翻译:
硼酸聚阴离子和钨阳离子共掺杂用于高能锂离子电池稳定富镍LiNi0.92Co0.06Al0.02O2阴极
层状富镍过渡金属氧化物作为可再充电锂离子电池的高能量密度阴极材料备受关注。但是,在锂化/脱锂过程中,富镍阴极的整体结构退化引起的严重容量衰减会阻碍其商业化。在这里,我们通过W 6+阳离子和BO 3 3-改性LiNi 0.92 Co 0.06 Al 0.02 O 2(NCA92)正极材料聚阴离子共掺杂可改善结构稳定性并提高电化学可逆性。共掺杂的NCA92材料在1 C下显示出显着改善的循环稳定性,在100次循环后的容量保持率为93.4%,而原始阴极的容量保持率仅为53.0%,并且结构严重恶化。进一步的研究表明,W 6+阳离子和BO 3 3-聚阴离子共掺杂可有效缓解内部固有应变和循环时结构降解引起的颗粒破碎。此外,W 6+和BO 3 3−共掺杂可以扩大NCA92的层间距,从而增加锂离子扩散系数,这有利于提高倍率能力。本研究表明,阳离子-阴离子共掺杂是保持富镍正极材料结构稳定性的有效策略,它促进了高能量密度锂离子电池稳定正极材料的开发。