Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Antifrosting Performance of a Superhydrophobic Surface by Optimizing the Surface Morphology.
Langmuir ( IF 3.7 ) Pub Date : 2020-08-21 , DOI: 10.1021/acs.langmuir.0c01618 Shuyue Jiang 1 , Haifeng Zhang 1, 2 , Chunfeng Jiang 1 , Xiaowei Liu 1, 2
Langmuir ( IF 3.7 ) Pub Date : 2020-08-21 , DOI: 10.1021/acs.langmuir.0c01618 Shuyue Jiang 1 , Haifeng Zhang 1, 2 , Chunfeng Jiang 1 , Xiaowei Liu 1, 2
Affiliation
Improving the antifrosting ability of stainless steel is crucial. In previous reports, many efforts have been dedicated to enhancing the antifrosting performance of superhydrophobic surface by fabricating different surface morphology. However, no researchers have proposed what kind of surface morphology can effectively prevent the frost based on the theory of superhydrophobic surfaces. In this article, we build a simulation model to study the effects of different surface morphology on antifrosting based on the Cassie model. We find that the higher the proportion of air between the droplet and the substrate, the better the antifrosting performance of the superhydrophobic surface. Therefore, we propose one superhydrophobic surface (denoted as sample #R) fabricated by selective growth. It can contain more air between the droplet and the surface. Further frosting experiments at a low temperature of −21 °C and a humidity of 75% show that 15% frost coverage on sample #R can be delayed to 63 h, as compared to less than 3 h for untreated stainless steel. In addition, the preparation method is generally applicable to other metals. Therefore, this work provides new insights into the rational design of a superhydrophobic surface with antifrosting in a harsh environment.
中文翻译:
通过优化表面形态,超疏水表面的防霜性能。
提高不锈钢的防霜能力至关重要。在以前的报道中,已经通过制造不同的表面形态致力于提高超疏水表面的防霜性能。但是,没有研究者基于超疏水性表面理论提出什么样的表面形态可以有效地防止霜冻。在本文中,我们建立了一个仿真模型,以基于Cassie模型研究不同表面形态对防霜剂的影响。我们发现,液滴与基材之间的空气比例越高,超疏水表面的防霜性能越好。因此,我们提出了一种通过选择性生长制造的超疏水表面(称为样品#R)。它可以在液滴和表面之间包含更多的空气。在-21°C的低温和75%的湿度下进行的进一步磨砂实验表明,与未经处理的不锈钢不到3小时相比,#R样品上15%的霜覆盖率可延迟至63小时。另外,该制备方法通常适用于其他金属。因此,这项工作为在恶劣环境下具有防霜功能的超疏水表面的合理设计提供了新的见识。
更新日期:2020-09-01
中文翻译:
通过优化表面形态,超疏水表面的防霜性能。
提高不锈钢的防霜能力至关重要。在以前的报道中,已经通过制造不同的表面形态致力于提高超疏水表面的防霜性能。但是,没有研究者基于超疏水性表面理论提出什么样的表面形态可以有效地防止霜冻。在本文中,我们建立了一个仿真模型,以基于Cassie模型研究不同表面形态对防霜剂的影响。我们发现,液滴与基材之间的空气比例越高,超疏水表面的防霜性能越好。因此,我们提出了一种通过选择性生长制造的超疏水表面(称为样品#R)。它可以在液滴和表面之间包含更多的空气。在-21°C的低温和75%的湿度下进行的进一步磨砂实验表明,与未经处理的不锈钢不到3小时相比,#R样品上15%的霜覆盖率可延迟至63小时。另外,该制备方法通常适用于其他金属。因此,这项工作为在恶劣环境下具有防霜功能的超疏水表面的合理设计提供了新的见识。