当前位置:
X-MOL 学术
›
ACS Appl. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Coupling High-Throughput Experiments and Regression Algorithms to Optimize PGM-Free ORR Electrocatalyst Synthesis
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2020-08-20 , DOI: 10.1021/acsaem.0c01466 Mohammad Rezaul Karim 1 , Magali Ferrandon 2 , Samantha Medina 2 , Elliot Sture 2 , Nancy Kariuki 2 , Deborah J. Myers 2 , Edward F. Holby 3 , Piotr Zelenay 4 , Towfiq Ahmed 1
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2020-08-20 , DOI: 10.1021/acsaem.0c01466 Mohammad Rezaul Karim 1 , Magali Ferrandon 2 , Samantha Medina 2 , Elliot Sture 2 , Nancy Kariuki 2 , Deborah J. Myers 2 , Edward F. Holby 3 , Piotr Zelenay 4 , Towfiq Ahmed 1
Affiliation
Over the past decades, significant improvement has been achieved in the performance of platinum group metal-free (PGM-free) materials as an alternative to Pt-based electrocatalysts for oxygen reduction reaction (ORR). However, further progress in ORR activity requires evaluation of precursors and synthesis approaches. In response to this challenge, we generated a first of its kind experimental data set of 36 samples using high-throughput synthesis and activity measurements. Several control parameters (e.g., Fe precursor identity, the precursor content, and pyrolysis temperature) were varied. We then developed several state-of-the-art machine learning (ML) based regression models to predict ORR activity, dependent on selected synthesis variables. Through an iterative algorithm, higher prediction accuracy (smaller root-mean-square error) was achieved. We identified that gradient boosting regression (GBR) and support vector regression (SVR), among several methods, work best for this data set. Aided by our ML-based surrogate models, we decided to alter catalyst synthesis conditions, which resulted in a 36% increase in measured ORR activity in comparison to the maximum ORR mass activity value of 21.9 A/gcatalyst in the original data set. This combined experiment and machine learning approach represents a promising path forward toward developing highly efficient next-generation ORR electrocatalysts and, more generally, functional materials.
中文翻译:
结合高通量实验和回归算法优化无PGM的ORR电催化剂的合成
在过去的几十年中,作为用于氧还原反应(ORR)的基于Pt的电催化剂的替代品,无铂族金属(无PGM)材料的性能已取得显着改善。但是,ORR活性的进一步发展要求对前体和合成方法进行评估。为了应对这一挑战,我们使用高通量合成和活性测量方法生成了第一个包含36个样品的实验数据集。改变了几个控制参数(例如,Fe前驱物身份,前驱物含量和热解温度)。然后,我们根据所选的合成变量,开发了几种基于最新机器学习(ML)的回归模型来预测ORR活动。通过迭代算法,获得了更高的预测精度(较小的均方根误差)。我们发现,在几种方法中,梯度增强回归(GBR)和支持向量回归(SVR)最适合此数据集。在我们基于ML的替代模型的帮助下,我们决定更改催化剂的合成条件,与最大ORR质量活性值21.9 A / g相比,其测量的ORR活性提高了36%原始数据集中的催化剂。这种结合了实验和机器学习方法的方法为开发高效的下一代ORR电催化剂以及更广泛的功能材料提供了一条有希望的道路。
更新日期:2020-09-28
中文翻译:
结合高通量实验和回归算法优化无PGM的ORR电催化剂的合成
在过去的几十年中,作为用于氧还原反应(ORR)的基于Pt的电催化剂的替代品,无铂族金属(无PGM)材料的性能已取得显着改善。但是,ORR活性的进一步发展要求对前体和合成方法进行评估。为了应对这一挑战,我们使用高通量合成和活性测量方法生成了第一个包含36个样品的实验数据集。改变了几个控制参数(例如,Fe前驱物身份,前驱物含量和热解温度)。然后,我们根据所选的合成变量,开发了几种基于最新机器学习(ML)的回归模型来预测ORR活动。通过迭代算法,获得了更高的预测精度(较小的均方根误差)。我们发现,在几种方法中,梯度增强回归(GBR)和支持向量回归(SVR)最适合此数据集。在我们基于ML的替代模型的帮助下,我们决定更改催化剂的合成条件,与最大ORR质量活性值21.9 A / g相比,其测量的ORR活性提高了36%原始数据集中的催化剂。这种结合了实验和机器学习方法的方法为开发高效的下一代ORR电催化剂以及更广泛的功能材料提供了一条有希望的道路。