当前位置: X-MOL 学术ACS Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nonvolatile and Neuromorphic Memory Devices Using Interfacial Traps in Two-Dimensional WSe2/MoTe2 Stack Channel.
ACS Nano ( IF 15.8 ) Pub Date : 2020-08-20 , DOI: 10.1021/acsnano.0c05393
Sam Park 1 , Yeonsu Jeong 1 , Hye-Jin Jin 1 , Junkyu Park 2 , Hyenam Jang 2 , Sol Lee 1 , Woong Huh 3 , Hyunmin Cho 1 , Hyung Gon Shin 1 , Kwanpyo Kim 1 , Chul-Ho Lee 3 , Shinhyun Choi 2 , Seongil Im 1
Affiliation  

Very recently, stacked two-dimensional materials have been studied, focusing on the van der Waals interaction at their stack junction interface. Here, we report field effect transistors (FETs) with stacked transition metal dichalcogenide (TMD) channels, where the heterojunction interface between two TMDs appears useful for nonvolatile or neuromorphic memory FETs. A few nanometer-thin WSe2 and MoTe2 flakes are vertically stacked on the gate dielectric, and bottom p-MoTe2 performs as a channel for hole transport. Interestingly, the WSe2/MoTe2 stack interface functions as a hole trapping site where traps behave in a nonvolatile manner, although trapping/detrapping can be controlled by gate voltage (VGS). Memory retention after high VGS pulse appears longer than 10000 s, and the Program/Erase ratio in a drain current is higher than 200. Moreover, the traps are delicately controllable even with small VGS, which indicates that a neuromorphic memory is also possible with our heterojunction stack FETs. Our stack channel FET demonstrates neuromorphic memory behavior of ∼94% recognition accuracy.

中文翻译:

在二维WSe2 / MoTe2堆栈通道中使用界面陷阱的非易失性和神经形态存储设备。

最近,已经研究了堆叠的二维材料,重点是在其堆叠结界面处的范德华相互作用。在这里,我们报告的场效应晶体管(FET)具有堆叠的过渡金属二硫化碳(TMD)通道,其中两个TMD之间的异质结界面对于非易失性或神经形态存储FET很有用。一些纳米级的WSe 2和MoTe 2薄片垂直堆叠在栅极电介质上,底部的p- MoTe 2充当空穴传输的通道。有趣的是,WSe 2 / MoTe 2尽管可以通过栅极电压(V GS)来控制陷阱,但堆栈接口仍充当空穴陷阱的位置,陷阱在其中以非易失性方式工作。高V GS脉冲后的记忆保持时间超过10000 s,漏极电流中的编程/擦除比大于200。此外,即使V GS较小,陷阱也可以精确控制,这表明也可以进行神​​经形态记忆用我们的异质结堆叠FET。我们的堆栈通道FET证明了约94%的识别精度的神经形态记忆行为。
更新日期:2020-09-22
down
wechat
bug