当前位置:
X-MOL 学术
›
ChemSusChem
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Surface Architecture Design of LiNi0.8 Co0.15 Al0.05 O2 Cathode with Synergistic Organics Encapsulation to Enhance Electrochemical Stability.
ChemSusChem ( IF 7.5 ) Pub Date : 2020-08-20 , DOI: 10.1002/cssc.202001771 Guorong Hu 1 , Ju Fan 1 , Yan Lu 1 , Yinjia Zhang 1 , Ke Du 1 , Zhongdong Peng 1 , Luyu Li 1 , Baichao Zhang 1 , You Shi 1 , Yanbing Cao 1
ChemSusChem ( IF 7.5 ) Pub Date : 2020-08-20 , DOI: 10.1002/cssc.202001771 Guorong Hu 1 , Ju Fan 1 , Yan Lu 1 , Yinjia Zhang 1 , Ke Du 1 , Zhongdong Peng 1 , Luyu Li 1 , Baichao Zhang 1 , You Shi 1 , Yanbing Cao 1
Affiliation
Ni‐rich LiNi0.8Co0.15Al0.05O2 (NCA) material attracts extensive attention due to its high discharge specific capacity, but its distinct drawbacks of rapid capacity decline and poor cycle performance at elevated temperatures and high voltage during charge/discharge cycling restricts its widespread application. To solve these problems, a multifunctional coating layer composed of a lithium‐ion‐conductive lithium polyacrylate (LiPAA) inner layer and a cross‐linked polymer outer layer from certain organic substances of silane‐coupling agent (KH550) and polyacrylic acid (PAA) is successfully designed on the surface of NCA materials, which is favorable for eliminating residual lithium and improving lithium‐ion conductivity, surface stability, and hydrophobicity of NCA materials. In addition, the amount of the coating material is also investigated. A series of characterization methods such as XRD, FTIR, SEM, TEM, and X‐ray photoelectron spectroscopy are used to analyze the morphologies and structures for materials of pristine and modified NCA. It is revealed that the co‐coating layer plays a vital part in reducing the surface residual alkalis and improving the stability of NCA particles; as a result, the modified NCA exhibits a greatly improved rate capability, cycle performance, and low polarization impedance.
中文翻译:
LiNi0.8 Co0.15 Al0.05 O2阴极的表面结构设计,具有协同有机物封装作用,可增强电化学稳定性。
富镍LiNi 0.8 Co 0.15 Al 0.05 O 2(NCA)材料因其高的放电比容量而引起了广泛的关注,但是其明显的缺点是容量快速下降,以及在充电/放电循环过程中在高温和高压下的不良循环性能,这限制了其广泛的应用。为了解决这些问题,多功能涂层由锂离子传导聚丙烯酸锂(LiPAA)内层和由硅烷偶联剂(KH550)和聚丙烯酸(PAA)的某些有机物质构成的交联聚合物外层组成是在NCA材料表面成功设计的,有利于消除残留的锂并改善NCA材料的锂离子传导性,表面稳定性和疏水性。另外,还研究了涂料的量。XRD,FTIR,SEM,TEM和X射线光电子能谱等一系列表征方法用于分析原始和改性NCA材料的形貌和结构。结果表明,共涂层在减少表面残余碱和提高NCA颗粒的稳定性方面起着至关重要的作用。结果,改进的NCA表现出大大提高的速率能力,循环性能和低极化阻抗。
更新日期:2020-08-20
中文翻译:
LiNi0.8 Co0.15 Al0.05 O2阴极的表面结构设计,具有协同有机物封装作用,可增强电化学稳定性。
富镍LiNi 0.8 Co 0.15 Al 0.05 O 2(NCA)材料因其高的放电比容量而引起了广泛的关注,但是其明显的缺点是容量快速下降,以及在充电/放电循环过程中在高温和高压下的不良循环性能,这限制了其广泛的应用。为了解决这些问题,多功能涂层由锂离子传导聚丙烯酸锂(LiPAA)内层和由硅烷偶联剂(KH550)和聚丙烯酸(PAA)的某些有机物质构成的交联聚合物外层组成是在NCA材料表面成功设计的,有利于消除残留的锂并改善NCA材料的锂离子传导性,表面稳定性和疏水性。另外,还研究了涂料的量。XRD,FTIR,SEM,TEM和X射线光电子能谱等一系列表征方法用于分析原始和改性NCA材料的形貌和结构。结果表明,共涂层在减少表面残余碱和提高NCA颗粒的稳定性方面起着至关重要的作用。结果,改进的NCA表现出大大提高的速率能力,循环性能和低极化阻抗。