当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Sequential Electrodeposition of Bifunctional Catalytically Active Structures in MoO3 /Ni-NiO Composite Electrocatalysts for Selective Hydrogen and Oxygen Evolution.
Advanced Materials ( IF 27.4 ) Pub Date : 2020-08-19 , DOI: 10.1002/adma.202003414 Xiaopeng Li 1 , Yang Wang 1 , Jiajun Wang 1 , Yumin Da 1 , Jinfeng Zhang 1 , Lanlan Li 2 , Cheng Zhong 1 , Yida Deng 1 , Xiaopeng Han 1 , Wenbin Hu 1, 3
Advanced Materials ( IF 27.4 ) Pub Date : 2020-08-19 , DOI: 10.1002/adma.202003414 Xiaopeng Li 1 , Yang Wang 1 , Jiajun Wang 1 , Yumin Da 1 , Jinfeng Zhang 1 , Lanlan Li 2 , Cheng Zhong 1 , Yida Deng 1 , Xiaopeng Han 1 , Wenbin Hu 1, 3
Affiliation
Exploring earth‐abundant and highly efficient electrocatalysts is critical for further development of water electrolyzer systems. Integrating bifunctional catalytically active sites into one multi‐component might greatly improve the overall water‐splitting performance. In this work, amorphous NiO nanosheets coupled with ultrafine Ni and MoO3 nanoparticles (MoO3/Ni–NiO), which contains two heterostructures (i.e., Ni–NiO and MoO3–NiO), is fabricated via a novel sequential electrodeposition strategy. The as‐synthesized MoO3/Ni–NiO composite exhibits superior electrocatalytic properties, affording low overpotentials of 62 mV at 10 mA cm−2 and 347 mV at 100 mA cm−2 for catalyzing the hydrogen and the oxygen evolution reaction (HER/OER), respectively. Moreover, the MoO3/Ni–NiO hybrid enables the overall alkaline water‐splitting at a low cell voltage of 1.55 V to achieve 10 mA cm−2 with outstanding catalytic durability, significantly outperforming the noble‐metal catalysts and many materials previously reported. Experimental and theoretical investigations collectively demonstrate the generated Ni–NiO and MoO3–NiO heterostructures significantly reduce the energetic barrier and act as catalytically active centers for selective HER and OER, synergistically accelerating the overall water‐splitting process. This work helps to fundamentally understand the heterostructure‐dependent mechanism, providing guidance for the rational design and oriented construction of hybrid nanomaterials for diverse catalytic processes.
中文翻译:
MoO3 / Ni-NiO复合电催化剂中双功能催化活性结构的顺序电沉积,用于选择性析氢和析氧。
探索富含地球的高效电催化剂对于进一步开发水电解系统至关重要。将双功能催化活性位点集成到一个多组分中可能会大大改善整体水分解性能。在这项工作中,通过一种新颖的顺序电沉积策略,制备了非晶态的NiO纳米片以及超细的Ni和MoO 3纳米粒子(MoO 3 / Ni–NiO),其中包含两个异质结构(即,Ni–NiO和MoO 3 –NiO)。刚合成的MoO 3 / Ni-NiO复合材料具有优异的电催化性能,在10 mA cm -2时具有62 mV的低电势,在100 mA cm -2时具有347 mV的低电势。分别用于催化氢气和氧气放出反应(HER / OER)。此外,MoO 3 / Ni-NiO杂化物能够在1.55 V的低电池电压下进行整体碱性水分解,从而达到10 mA cm -2,并具有出色的催化耐久性,显着优于贵金属催化剂和先前报道的许多材料。实验和理论研究共同证明了生成的Ni–NiO和MoO 3-NiO异质显著降低能垒,并充当选择性HER和OER催化活性中心,协同加速整体水分解过程。这项工作有助于从根本上理解异质结构相关的机理,为合理设计和定向构建用于各种催化过程的杂化纳米材料提供指导。
更新日期:2020-10-02
中文翻译:
MoO3 / Ni-NiO复合电催化剂中双功能催化活性结构的顺序电沉积,用于选择性析氢和析氧。
探索富含地球的高效电催化剂对于进一步开发水电解系统至关重要。将双功能催化活性位点集成到一个多组分中可能会大大改善整体水分解性能。在这项工作中,通过一种新颖的顺序电沉积策略,制备了非晶态的NiO纳米片以及超细的Ni和MoO 3纳米粒子(MoO 3 / Ni–NiO),其中包含两个异质结构(即,Ni–NiO和MoO 3 –NiO)。刚合成的MoO 3 / Ni-NiO复合材料具有优异的电催化性能,在10 mA cm -2时具有62 mV的低电势,在100 mA cm -2时具有347 mV的低电势。分别用于催化氢气和氧气放出反应(HER / OER)。此外,MoO 3 / Ni-NiO杂化物能够在1.55 V的低电池电压下进行整体碱性水分解,从而达到10 mA cm -2,并具有出色的催化耐久性,显着优于贵金属催化剂和先前报道的许多材料。实验和理论研究共同证明了生成的Ni–NiO和MoO 3-NiO异质显著降低能垒,并充当选择性HER和OER催化活性中心,协同加速整体水分解过程。这项工作有助于从根本上理解异质结构相关的机理,为合理设计和定向构建用于各种催化过程的杂化纳米材料提供指导。