当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Interface‐Induced Pseudocapacitance in Nonporous Heterogeneous Particles for High Volumetric Sodium Storage
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2020-08-20 , DOI: 10.1002/adfm.202002019 Bo Zhao 1 , Qianqian Liu 1 , Yujie Chen 1 , Qian Liu 1 , Qian Yu 1 , Hao Bin Wu 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2020-08-20 , DOI: 10.1002/adfm.202002019 Bo Zhao 1 , Qianqian Liu 1 , Yujie Chen 1 , Qian Liu 1 , Qian Yu 1 , Hao Bin Wu 1
Affiliation
Developing pseudocapacitive materials for electrochemical energy storage generally relies on the formation of nanosize and/or nanoporous particles with short solid‐state diffusion distance and high surface area, which leads to low volumetric capacity and severe parasitic reactions. In this work, nonporous bulky heterogeneous particles composed of TiO2 matrix and phosphorus are reported for high volumetric pseudocapacitive Na storage. An in situ formed 3D titanium phosphate interphase serves as a fast ionic transport network, allowing rapid sodiation/desodiation processes within the particles. Such nonporous heterogeneous particles exhibit “interface‐induced pseudocapacitance” with an enhanced volumetric capacity, which is over 50% higher than that of commercial hard carbon anodes. This study demonstrates heterogeneous particles with a well‐engineered nanostructure as a new paradigm for electrode materials design.
中文翻译:
高容量钠存储的无孔异质颗粒中界面诱导的伪电容
开发用于电化学能量存储的伪电容材料通常依赖于形成具有短固态扩散距离和高表面积的纳米级和/或纳米多孔颗粒,这导致低容量和严重的寄生反应。在这项工作中,由TiO 2组成的无孔大块异质颗粒据报道,基质和磷具有高容量的伪电容性Na储存。原位形成的3D磷酸钛中间相可作为快速的离子传输网络,从而允许在颗粒内进行快速的糖化/脱氧过程。这种无孔非均质颗粒表现出“界面诱导的假电容”,具有更高的体积容量,比市售硬碳阳极高出50%以上。这项研究表明,具有精心设计的纳米结构的异质颗粒是电极材料设计的新范例。
更新日期:2020-10-17
中文翻译:
高容量钠存储的无孔异质颗粒中界面诱导的伪电容
开发用于电化学能量存储的伪电容材料通常依赖于形成具有短固态扩散距离和高表面积的纳米级和/或纳米多孔颗粒,这导致低容量和严重的寄生反应。在这项工作中,由TiO 2组成的无孔大块异质颗粒据报道,基质和磷具有高容量的伪电容性Na储存。原位形成的3D磷酸钛中间相可作为快速的离子传输网络,从而允许在颗粒内进行快速的糖化/脱氧过程。这种无孔非均质颗粒表现出“界面诱导的假电容”,具有更高的体积容量,比市售硬碳阳极高出50%以上。这项研究表明,具有精心设计的纳米结构的异质颗粒是电极材料设计的新范例。