当前位置:
X-MOL 学术
›
Nano Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Self-Assembled 3D Nanosplit Rings for Plasmon-Enhanced Optofluidic Sensing.
Nano Letters ( IF 9.6 ) Pub Date : 2020-08-18 , DOI: 10.1021/acs.nanolett.0c02575 Chunhui Dai 1 , Zihao Lin 1 , Kriti Agarwal 1 , Carol Mikhael 1 , Anupam Aich 2 , Kalpna Gupta 2, 3, 4 , Jeong-Hyun Cho 1
Nano Letters ( IF 9.6 ) Pub Date : 2020-08-18 , DOI: 10.1021/acs.nanolett.0c02575 Chunhui Dai 1 , Zihao Lin 1 , Kriti Agarwal 1 , Carol Mikhael 1 , Anupam Aich 2 , Kalpna Gupta 2, 3, 4 , Jeong-Hyun Cho 1
Affiliation
Plasmonic sensors are commonly defined on two-dimensional (2D) surfaces with an enhanced electromagnetic field only near the surface, which requires precise positioning of the targeted molecules within hotspots. To address this challenge, we realize segmented nanocylinders that incorporate plasmonic (1–50 nm) gaps within three-dimensional (3D) nanostructures (nanocylinders) using electron irradiation triggered self-assembly. The 3D structures allow desired plasmonic patterns on their inner cylindrical walls forming the nanofluidic channels. The nanocylinders bridge nanoplasmonics and nanofluidics by achieving electromagnetic field enhancement and fluid confinement simultaneously. This hybrid system enables rapid diffusion of targeted species to the larger spatial hotspots in the 3D plasmonic structures, leading to enhanced interactions that contribute to a higher sensitivity. This concept has been demonstrated by characterizing an optical response of the 3D plasmonic nanostructures using surface-enhanced Raman spectroscopy (SERS), which shows enhancement over a 22 times higher intensity for hemoglobin fingerprints with nanocylinders compared to 2D nanostructures.
中文翻译:
自组装的3D纳米裂环,用于等离激元增强的光流传感。
等离子体传感器通常在二维(2D)表面上定义,仅在表面附近具有增强的电磁场,这需要在热点内精确定位目标分子。为了应对这一挑战,我们实现了分段的纳米圆柱体,利用电子辐照触发的自组装,在三维(3D)纳米结构(纳米圆柱体)中结合了等离子(1–50 nm)间隙。3D结构允许在其内圆柱壁上形成纳米流体通道的所需等离激元图案。纳米圆柱体通过同时实现电磁场增强和流体约束来桥接纳米等离激元学和纳米流体学。这种混合系统可将目标物种快速扩散到3D等离子体结构中的较大空间热点,导致互动性增强,从而提高了敏感性。通过使用表面增强拉曼光谱(SERS)表征3D等离子体纳米结构的光学响应,可以证明这一概念,与2D纳米结构相比,纳米柱对血红蛋白指纹的显示强度提高了22倍。
更新日期:2020-09-10
中文翻译:
自组装的3D纳米裂环,用于等离激元增强的光流传感。
等离子体传感器通常在二维(2D)表面上定义,仅在表面附近具有增强的电磁场,这需要在热点内精确定位目标分子。为了应对这一挑战,我们实现了分段的纳米圆柱体,利用电子辐照触发的自组装,在三维(3D)纳米结构(纳米圆柱体)中结合了等离子(1–50 nm)间隙。3D结构允许在其内圆柱壁上形成纳米流体通道的所需等离激元图案。纳米圆柱体通过同时实现电磁场增强和流体约束来桥接纳米等离激元学和纳米流体学。这种混合系统可将目标物种快速扩散到3D等离子体结构中的较大空间热点,导致互动性增强,从而提高了敏感性。通过使用表面增强拉曼光谱(SERS)表征3D等离子体纳米结构的光学响应,可以证明这一概念,与2D纳米结构相比,纳米柱对血红蛋白指纹的显示强度提高了22倍。