Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Nano‐Dual‐Phase Metallic Glass Film Enhances Strength and Ductility of a Gradient Nanograined Magnesium Alloy
Advanced Science ( IF 14.3 ) Pub Date : 2020-08-16 , DOI: 10.1002/advs.202001480 Chang Liu 1, 2 , Yong Liu 1, 3 , Qing Wang 1, 4 , Xiaowei Liu 1, 5 , Yan Bao 1 , Ge Wu 1, 2 , Jian Lu 1, 6, 7, 8
Advanced Science ( IF 14.3 ) Pub Date : 2020-08-16 , DOI: 10.1002/advs.202001480 Chang Liu 1, 2 , Yong Liu 1, 3 , Qing Wang 1, 4 , Xiaowei Liu 1, 5 , Yan Bao 1 , Ge Wu 1, 2 , Jian Lu 1, 6, 7, 8
Affiliation
Magnesium (Mg) alloys are good candidates for applications with requirement of energy saving, taking advantage of their low density. However, the fewer slip systems of the hexagonal‐close‐packed (hcp) structure restrict ductility of Mg alloys. Here, a hybrid nanostructure concept is presented by combining nano‐dual‐phase metallic glass (NDP‐MG) and gradient nanograin structure in Mg alloys to achieve a higher yield strength (230 MPa, 31% improvement compared with the reference base alloy) and larger ductility (20%, threefold higher than the SMAT‐H sample), which breaks the strength–ductility trade‐off dilemma. This hybrid nanostructure is realized by surface mechanical attrition treatment (SMAT) on the surface of a crystalline Mg alloy, and followed by physical vapor deposition of a Mg‐based NDP‐MG. The higher strength is provided by the nanograin layer generated by SMAT. The larger ductility is a synergistic effect of multiple shear bandings and nanocrystallization of the NDP‐MG, inhibition of crack propagation from the SMATed nanograined structure by the NDP‐MG, and strain‐induced grain growth in the SMATed nanograin layer. This hybrid nanostructure design provides a general route to render brittle alloys stronger and ductile, especially in hcp systems.
中文翻译:
纳米双相金属玻璃膜增强梯度纳米晶镁合金的强度和延展性
镁 (Mg) 合金凭借其低密度的优势,非常适合需要节能的应用。然而,密排六方(hcp)结构的滑移系统较少,限制了镁合金的延展性。在这里,提出了一种混合纳米结构概念,通过将纳米双相金属玻璃(NDP-MG)和镁合金中的梯度纳米晶结构相结合,以实现更高的屈服强度(230 MPa,与参考基础合金相比提高了 31%)和更大的延展性(20%,是 SMAT-H 样品的三倍),打破了强度与延展性的权衡困境。这种混合纳米结构是通过在结晶镁合金表面进行表面机械磨损处理(SMAT),然后通过物理气相沉积镁基 NDP-MG 来实现的。 SMAT 生成的纳米颗粒层提供了更高的强度。较大的延展性是 NDP-MG 的多重剪切带和纳米晶化、NDP-MG 对 SMAT 纳米晶结构裂纹扩展的抑制以及 SMAT 纳米晶层中应变诱导晶粒生长的协同效应。这种混合纳米结构设计提供了一种使脆性合金变得更强、更具延展性的通用途径,特别是在六方共面系统中。
更新日期:2020-10-07
中文翻译:
纳米双相金属玻璃膜增强梯度纳米晶镁合金的强度和延展性
镁 (Mg) 合金凭借其低密度的优势,非常适合需要节能的应用。然而,密排六方(hcp)结构的滑移系统较少,限制了镁合金的延展性。在这里,提出了一种混合纳米结构概念,通过将纳米双相金属玻璃(NDP-MG)和镁合金中的梯度纳米晶结构相结合,以实现更高的屈服强度(230 MPa,与参考基础合金相比提高了 31%)和更大的延展性(20%,是 SMAT-H 样品的三倍),打破了强度与延展性的权衡困境。这种混合纳米结构是通过在结晶镁合金表面进行表面机械磨损处理(SMAT),然后通过物理气相沉积镁基 NDP-MG 来实现的。 SMAT 生成的纳米颗粒层提供了更高的强度。较大的延展性是 NDP-MG 的多重剪切带和纳米晶化、NDP-MG 对 SMAT 纳米晶结构裂纹扩展的抑制以及 SMAT 纳米晶层中应变诱导晶粒生长的协同效应。这种混合纳米结构设计提供了一种使脆性合金变得更强、更具延展性的通用途径,特别是在六方共面系统中。