当前位置:
X-MOL 学术
›
J. Membr. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Influence of organic fouling layer characteristics and osmotic backwashing conditions on cleaning efficiency of RO membranes
Journal of Membrane Science ( IF 8.4 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.memsci.2020.118604 Sorcha Daly , Ashley Allen , Vasileios Koutsos , Andrea J.C. Semião
Journal of Membrane Science ( IF 8.4 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.memsci.2020.118604 Sorcha Daly , Ashley Allen , Vasileios Koutsos , Andrea J.C. Semião
Abstract Fouling remains a prevalent and serious problem in industries using membrane processes. Efforts to mitigate fouling are improving, however, membrane fouling cannot be completely eliminated. Therefore fouling control via development of sustainable cleaning methods are crucial. Despite osmotic backwashing showing promise, little is understood about this cleaning method for removal of fouling from reverse osmosis (RO) membranes. This paper systematically examines how organic fouling characteristics and osmotic backwashing parameters influence cleaning efficiency. Alginic acid was used as a model foulant and numerous microscopy techniques, including confocal microscopy, scanning electron microscopy and atomic force microscopy were used to examine the membrane fouling before and after cleaning to gain a clearer understanding of the mechanisms involved. Increasing CaCl2 concentration in the fouling solution resulted in an increase in fouling layer thickness from 37 to 179 μm, due to the complexation of Ca2+ and the carboxyl groups in the alginate. Osmotic backwashing efficiency with 0.7 M NaCl decreased as the fouling layer became thicker and the pure water flux (PWF) recovery decreased from 92% to 81%. Osmotic backwashing efficiency also decreased with increasing initial permeate flux, as less fouling was removed: the fouling generated at higher initial fluxes is largely irreversible, resulting in a denser and more compact fouling layer. In an effort to increase osmotic backwashing flux, a CaCl2 draw solution was used, however, the Ca2+ ions were found to interact with the alginate in the fouling layer, rendering this method inefficient, when compared to NaCl draw solutions which originated similar osmotic backwashing fluxes. Interestingly, the fouling layer was found to swell from 16 μm to 141 μm, when osmotic backwashing was carried out with a NaCl draw solution, followed by contact with a low ionic strength solution used for PWF testing. This phenomenon does not occur to the same extent after backwashing with CaCl2. The same trends were obtained for bovine serum albumin (BSA) fouling, whilst humic acid (HA) did not display any swelling phenomena. However, it showed the same cleaning inefficiency when using CaCl2 as a draw solution.
中文翻译:
有机污染层特性和渗透反冲洗条件对RO膜清洗效率的影响
摘要 在使用膜工艺的工业中,污垢仍然是一个普遍而严重的问题。减轻结垢的努力正在改进,但是,膜结垢不能完全消除。因此,通过开发可持续的清洁方法来控制污垢至关重要。尽管渗透反洗显示出前景,但人们对这种用于去除反渗透 (RO) 膜污垢的清洁方法知之甚少。本文系统地研究了有机污染特性和渗透反冲洗参数如何影响清洗效率。海藻酸被用作模型污染物和许多显微镜技术,包括共聚焦显微镜、使用扫描电子显微镜和原子力显微镜检查清洁前后的膜污染,以更清楚地了解所涉及的机制。由于 Ca2+ 和藻酸盐中的羧基的络合,污垢溶液中 CaCl2 浓度的增加导致污垢层厚度从 37 μm 增加到 179 μm。随着污垢层变厚和纯水通量 (PWF) 回收率从 92% 降低到 81%,使用 0.7 M NaCl 的渗透反洗效率降低。渗透反洗效率也随着初始渗透通量的增加而降低,因为去除的污垢较少:在较高的初始通量下产生的污垢在很大程度上是不可逆的,导致污垢层更致密、更致密。为了增加渗透反洗通量,使用 CaCl2 汲取溶液,然而,发现 Ca2+ 离子与污垢层中的藻酸盐相互作用,与产生类似渗透反洗通量的 NaCl 汲取溶液相比,使该方法效率低下。有趣的是,当使用 NaCl 吸取溶液进行渗透反冲洗,然后与用于 PWF 测试的低离子强度溶液接触时,发现污垢层从 16 μm 膨胀到 141 μm。用 CaCl2 反洗后,这种现象不会以同样的程度发生。牛血清白蛋白 (BSA) 污染获得了相同的趋势,而腐殖酸 (HA) 没有显示任何膨胀现象。然而,当使用 CaCl2 作为汲取溶液时,它表现出同样的清洁效率低下。与产生类似渗透反洗通量的 NaCl 汲取溶液相比,该方法效率低下。有趣的是,当使用 NaCl 吸取溶液进行渗透反冲洗,然后与用于 PWF 测试的低离子强度溶液接触时,发现污垢层从 16 μm 膨胀到 141 μm。用 CaCl2 反洗后,这种现象不会以同样的程度发生。牛血清白蛋白 (BSA) 污染获得了相同的趋势,而腐殖酸 (HA) 没有显示任何膨胀现象。然而,当使用 CaCl2 作为汲取溶液时,它表现出同样的清洁效率低下。与产生类似渗透反洗通量的 NaCl 汲取溶液相比,该方法效率低下。有趣的是,当使用 NaCl 吸取溶液进行渗透反冲洗,然后与用于 PWF 测试的低离子强度溶液接触时,发现污垢层从 16 μm 膨胀到 141 μm。用 CaCl2 反洗后,这种现象不会以同样的程度发生。牛血清白蛋白 (BSA) 污染获得了相同的趋势,而腐殖酸 (HA) 没有显示任何膨胀现象。然而,当使用 CaCl2 作为汲取溶液时,它表现出同样的清洁效率低下。当使用 NaCl 汲取溶液进行渗透反冲洗,然后与用于 PWF 测试的低离子强度溶液接触时。用 CaCl2 反洗后,这种现象不会以同样的程度发生。牛血清白蛋白 (BSA) 污染获得了相同的趋势,而腐殖酸 (HA) 没有显示任何膨胀现象。然而,当使用 CaCl2 作为汲取溶液时,它表现出同样的清洁效率低下。当使用 NaCl 汲取溶液进行渗透反冲洗,然后与用于 PWF 测试的低离子强度溶液接触时。用 CaCl2 反洗后,这种现象不会以同样的程度发生。牛血清白蛋白 (BSA) 污染获得了相同的趋势,而腐殖酸 (HA) 没有显示任何膨胀现象。然而,当使用 CaCl2 作为汲取溶液时,它表现出同样的清洁效率低下。
更新日期:2020-12-01
中文翻译:
有机污染层特性和渗透反冲洗条件对RO膜清洗效率的影响
摘要 在使用膜工艺的工业中,污垢仍然是一个普遍而严重的问题。减轻结垢的努力正在改进,但是,膜结垢不能完全消除。因此,通过开发可持续的清洁方法来控制污垢至关重要。尽管渗透反洗显示出前景,但人们对这种用于去除反渗透 (RO) 膜污垢的清洁方法知之甚少。本文系统地研究了有机污染特性和渗透反冲洗参数如何影响清洗效率。海藻酸被用作模型污染物和许多显微镜技术,包括共聚焦显微镜、使用扫描电子显微镜和原子力显微镜检查清洁前后的膜污染,以更清楚地了解所涉及的机制。由于 Ca2+ 和藻酸盐中的羧基的络合,污垢溶液中 CaCl2 浓度的增加导致污垢层厚度从 37 μm 增加到 179 μm。随着污垢层变厚和纯水通量 (PWF) 回收率从 92% 降低到 81%,使用 0.7 M NaCl 的渗透反洗效率降低。渗透反洗效率也随着初始渗透通量的增加而降低,因为去除的污垢较少:在较高的初始通量下产生的污垢在很大程度上是不可逆的,导致污垢层更致密、更致密。为了增加渗透反洗通量,使用 CaCl2 汲取溶液,然而,发现 Ca2+ 离子与污垢层中的藻酸盐相互作用,与产生类似渗透反洗通量的 NaCl 汲取溶液相比,使该方法效率低下。有趣的是,当使用 NaCl 吸取溶液进行渗透反冲洗,然后与用于 PWF 测试的低离子强度溶液接触时,发现污垢层从 16 μm 膨胀到 141 μm。用 CaCl2 反洗后,这种现象不会以同样的程度发生。牛血清白蛋白 (BSA) 污染获得了相同的趋势,而腐殖酸 (HA) 没有显示任何膨胀现象。然而,当使用 CaCl2 作为汲取溶液时,它表现出同样的清洁效率低下。与产生类似渗透反洗通量的 NaCl 汲取溶液相比,该方法效率低下。有趣的是,当使用 NaCl 吸取溶液进行渗透反冲洗,然后与用于 PWF 测试的低离子强度溶液接触时,发现污垢层从 16 μm 膨胀到 141 μm。用 CaCl2 反洗后,这种现象不会以同样的程度发生。牛血清白蛋白 (BSA) 污染获得了相同的趋势,而腐殖酸 (HA) 没有显示任何膨胀现象。然而,当使用 CaCl2 作为汲取溶液时,它表现出同样的清洁效率低下。与产生类似渗透反洗通量的 NaCl 汲取溶液相比,该方法效率低下。有趣的是,当使用 NaCl 吸取溶液进行渗透反冲洗,然后与用于 PWF 测试的低离子强度溶液接触时,发现污垢层从 16 μm 膨胀到 141 μm。用 CaCl2 反洗后,这种现象不会以同样的程度发生。牛血清白蛋白 (BSA) 污染获得了相同的趋势,而腐殖酸 (HA) 没有显示任何膨胀现象。然而,当使用 CaCl2 作为汲取溶液时,它表现出同样的清洁效率低下。当使用 NaCl 汲取溶液进行渗透反冲洗,然后与用于 PWF 测试的低离子强度溶液接触时。用 CaCl2 反洗后,这种现象不会以同样的程度发生。牛血清白蛋白 (BSA) 污染获得了相同的趋势,而腐殖酸 (HA) 没有显示任何膨胀现象。然而,当使用 CaCl2 作为汲取溶液时,它表现出同样的清洁效率低下。当使用 NaCl 汲取溶液进行渗透反冲洗,然后与用于 PWF 测试的低离子强度溶液接触时。用 CaCl2 反洗后,这种现象不会以同样的程度发生。牛血清白蛋白 (BSA) 污染获得了相同的趋势,而腐殖酸 (HA) 没有显示任何膨胀现象。然而,当使用 CaCl2 作为汲取溶液时,它表现出同样的清洁效率低下。