当前位置: X-MOL 学术FEBS J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Aminoglycoside antibiotics can inhibit or activate twister ribozyme cleavage
The FEBS Journal ( IF 5.5 ) Pub Date : 2020-08-13 , DOI: 10.1111/febs.15517
Jun Zhang 1, 2 , Getong Liu 1, 2 , Wenxia Sun 1, 2 , Dongrong Chen 1, 2 , Alastair I H Murchie 1, 2
Affiliation  

Interactions between aminoglycoside antibiotics and the twister ribozyme were investigated in this study. An initial screen of 17 RNA‐binding antibiotics showed that a number of aminoglycosides inhibit the ribozyme, while a subset of aminoglycosides enhances twister cleavage. Initial kinetic analysis of the twister ribozyme showed a sevenfold inhibition of ribozyme cleavage by paromomycin and a fivefold enhancement of cleavage by sisomicin. Direct binding between the twister ribozyme RNA and paromomycin or sisomicin was measured by microscale thermophoresis. Selective 2′‐hydroxyl acylation analysed by primer extension shows that both paromomycin and sisomicin induce distinctive tertiary structure changes to the twister ribozyme. Published crystal structures and mechanistic analysis of the twister ribozyme have deduced a nucleobase‐mediated general acid–base catalytic mechanism, in which a conserved guanine plays a key role. Here, we show that paromomycin binding induces a structural transition to the twister ribozyme such that a highly conserved guanine in the active site becomes displaced, leading to inhibition of cleavage. In contrast, sisomicin binding appears to change interactions between P3 and L2, inducing allosteric changes to the active site that enhance twister RNA cleavage. Therefore, we show that small‐molecule binding can modulate twister ribozyme activity. These results suggest that aminoglycosides may be used as molecular tools to study this widely distributed ribozyme.

中文翻译:

氨基糖苷类抗生素可以抑制或激活扭转核酶的裂解

在这项研究中研究了氨基糖苷类抗生素和扭转核酶之间的相互作用。初步筛选了17种与RNA结合的抗生素,发现许多氨基糖苷类抑制核酶,而一部分氨基糖苷类则增强扭转分子的裂解作用。扭转分子核酶的初步动力学分析显示,巴龙霉素对核酶裂解的抑制作用是七倍,而西索霉素的裂解对裂解酶的裂解的作用是五倍。扭转核酶RNA与巴龙霉素或西索米星之间的直接结合通过微尺度热泳测量。通过引物延伸进行的选择性2'-羟基酰化反应表明,巴龙霉素和西索霉素都可引起独特的三级结构向扭转核酶的变化。已发表的晶体结构和扭转核酶的机理分析推论了核碱基介导的一般酸碱催化机制,其中保守的鸟嘌呤起关键作用。在这里,我们表明巴龙霉素结合诱导向扭转核酶的结构转变,从而使活性位点中高度保守的鸟嘌呤移位,从而导致卵裂的抑制。相反,西索霉素的结合似乎改变了P3和L2之间的相互作用,诱导了活性位点的变构改变,从而增强了扭转RNA的切割。因此,我们表明小分子结合可以调节扭转分子核酶的活性。这些结果表明,氨基糖苷类可以用作研究这种广泛分布的核酶的分子工具。我们表明,巴龙霉素结合诱导向扭转核酶的结构转变,从而使活性位点中高度保守的鸟嘌呤移位,从而导致卵裂的抑制。相反,西索霉素的结合似乎改变了P3和L2之间的相互作用,诱导了活性位点的变构改变,从而增强了扭转RNA的切割。因此,我们表明小分子结合可以调节扭转分子核酶的活性。这些结果表明,氨基糖苷类可以用作研究这种广泛分布的核酶的分子工具。我们表明,巴龙霉素结合诱导向扭转核酶的结构转变,从而使活性位点中高度保守的鸟嘌呤移位,从而导致卵裂的抑制。相反,西索霉素的结合似乎改变了P3和L2之间的相互作用,诱导了活性位点的变构改变,从而增强了扭转RNA的切割。因此,我们表明小分子结合可以调节扭转分子核酶的活性。这些结果表明,氨基糖苷类可以用作研究这种广泛分布的核酶的分子工具。诱导活性位点的变构变化,从而增强扭转RNA的裂解。因此,我们表明小分子结合可以调节扭转分子核酶的活性。这些结果表明,氨基糖苷类可以用作研究这种广泛分布的核酶的分子工具。诱导活性位点的变构变化,从而增强扭转RNA的裂解。因此,我们表明小分子结合可以调节扭转分子核酶的活性。这些结果表明,氨基糖苷类可以用作研究这种广泛分布的核酶的分子工具。
更新日期:2020-08-13
down
wechat
bug