当前位置:
X-MOL 学术
›
ACS Sustain. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Boosting Electrocatalytic Nitrogen Fixation with Co–N3 Site-Decorated Porous Carbon
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2020-08-10 , DOI: 10.1021/acssuschemeng.0c04021
Meichun Qin 1 , Xinyong Li 1 , Guoqiang Gan 1 , Liang Wang 1 , Shiying Fan 1 , Zhifan Yin 1 , Guohua Chen 2
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2020-08-10 , DOI: 10.1021/acssuschemeng.0c04021
Meichun Qin 1 , Xinyong Li 1 , Guoqiang Gan 1 , Liang Wang 1 , Shiying Fan 1 , Zhifan Yin 1 , Guohua Chen 2
Affiliation
![]() |
Electrocatalytic ammonia (NH3) synthesis under ambient temperature and pressure is an emerging sustainable method for dinitrogen (N2) fixation, providing a potential environmentally benign pathway for N2 fixation using renewable power of electricity. However, this strategy is subjected to the low activity of electrocatalysts. In this work, a Co–Nx–C hybrid derived from the metal–organic framework with built-in Co–Nx active sites was fabricated. A high NH3 yield (37.6 μg mg–1 h–1 at −0.9 V vs a reversible hydrogen electrode) and favorable faradaic efficiency (17.6% at −0.3 V vs a reversible hydrogen electrode) were achieved in a 0.05 M H2SO4 electrolyte. The dominating coordination environment of Co–Nx was finally determined by combining X-ray absorption fine structure spectroscopy and theoretical calculation. Co–N3 demonstrated pivotal active centers that facilitated N2 adsorption, lowered the free energy of the rate-determining step, inhibited hydrogen evolution reaction, and promoted the N2 reduction reaction (N2RR). The hierarchical pore structure of catalysts also promoted N2 adsorption, and the produced high pressure contributed to the further reaction of N2 fixation. This work also provides a new strategy for developing cost-effective electrocatalytic materials for N2RR.
中文翻译:
Co-N 3定点多孔碳促进电催化固氮
在环境温度和压力下电催化合成氨(NH 3)是一种新兴的可持续固氮方法(N 2),为使用可再生电力固定N 2提供了潜在的环境良性途径。但是,该策略受到电催化剂活性低的影响。在这项工作中,从金属有机框架中获得了内置Co-N x活性位点的Co-N x -C杂化物。NH 3产量高(37.6μgmg –1 h –1在0.05 MH 2 SO 4电解液中,相对于可逆氢电极,在-0.9 V电压下)和法拉第效率(相对于可逆氢电极,在-0.3 V的电压下达到17.6%)。通过结合X射线吸收精细结构光谱和理论计算,最终确定了Co-N x的主要配位环境。Co–N 3表现出关键的活性中心,该中心可以促进N 2吸附,降低速率确定步骤的自由能,抑制氢释放反应并促进N 2还原反应(N 2 RR)。催化剂的层级孔结构也促进了N 2吸附和产生的高压有助于N 2固定的进一步反应。这项工作还为开发具有成本效益的N 2 RR电催化材料提供了新的策略。
更新日期:2020-09-08
中文翻译:

Co-N 3定点多孔碳促进电催化固氮
在环境温度和压力下电催化合成氨(NH 3)是一种新兴的可持续固氮方法(N 2),为使用可再生电力固定N 2提供了潜在的环境良性途径。但是,该策略受到电催化剂活性低的影响。在这项工作中,从金属有机框架中获得了内置Co-N x活性位点的Co-N x -C杂化物。NH 3产量高(37.6μgmg –1 h –1在0.05 MH 2 SO 4电解液中,相对于可逆氢电极,在-0.9 V电压下)和法拉第效率(相对于可逆氢电极,在-0.3 V的电压下达到17.6%)。通过结合X射线吸收精细结构光谱和理论计算,最终确定了Co-N x的主要配位环境。Co–N 3表现出关键的活性中心,该中心可以促进N 2吸附,降低速率确定步骤的自由能,抑制氢释放反应并促进N 2还原反应(N 2 RR)。催化剂的层级孔结构也促进了N 2吸附和产生的高压有助于N 2固定的进一步反应。这项工作还为开发具有成本效益的N 2 RR电催化材料提供了新的策略。