当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Toward High‐Performance Capacitive Potassium‐Ion Storage: A Superior Anode Material from Silicon Carbide‐Derived Carbon with a Well‐Developed Pore Structure
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2020-08-06 , DOI: 10.1002/adfm.202004348 Jing Wu 1 , Xiaxiang Zhang 1 , Zheng Li 1 , Chenfan Yang 1 , Wenda Zhong 1 , Wenlong Li 1 , Chengzhi Zhang 1 , Nianjun Yang 2 , Qin Zhang 3 , Xuanke Li 1, 3
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2020-08-06 , DOI: 10.1002/adfm.202004348 Jing Wu 1 , Xiaxiang Zhang 1 , Zheng Li 1 , Chenfan Yang 1 , Wenda Zhong 1 , Wenlong Li 1 , Chengzhi Zhang 1 , Nianjun Yang 2 , Qin Zhang 3 , Xuanke Li 1, 3
Affiliation
Potassium‐ion battery (PIB) using a carbon‐based anode is an ideal device for electrochemical energy storage. However, the large atomic size of potassium ions inevitably leads to huge volume expansion and the collapse of anodes, resulting in the severe capacity fading during the long‐term cycling. Herein, silicon carbide‐derived carbon (SiC‐CDC) with a controllable pore structure is synthesized with a concise etching approach. It exhibits a maximum capacity of 284.8 mA h g−1 at a current density of 0.1 A g−1 after 200 cycles as well as a highly reversible capacity of 197.3 mA h g−1 at a current density of 1.0 A g−1 even after 1000 cycles. A mixed mechanism of the potassium storage is proposed for this prominent performance. The interconnected pore structure with a high proportion of mesopore volume provides abundant active sites for the adsorption of potassium ions, a shortened electrolyte penetration path, and enlarged accumulation space for potassium ions, eventually leading to facilitated capacitive potassium storage inside this SiC‐CDC electrode. This work provides fundamental theories of designing pore structures for boosting capacitive potassium storage and unveils CDC‐based materials as the prospective anodes for high‐performance PIBs.
中文翻译:
迈向高性能电容式钾离子存储:一种优质的阳极材料,该材料由碳化硅衍生的碳制成且孔结构发达
使用碳基阳极的钾离子电池(PIB)是电化学能量存储的理想设备。但是,钾离子的大原子尺寸不可避免地导致巨大的体积膨胀和阳极塌陷,从而导致长期循环中严重的容量衰减。在此,采用简洁的刻蚀方法合成了具有可控孔结构的碳化硅衍生碳(SiC-CDC)。200次循环后,在0.1 A g -1的电流密度下,其最大容量为284.8 mA hg -1;在1.0 A g -1的电流密度下,其可逆容量为197.3 mA hg -1。即使经过1000次循环。提出了钾存储的混合机制以实现这一杰出性能。具有高比例的中孔体积的相互连接的孔结构为钾离子的吸附提供了丰富的活性位点,缩短了电解质的渗透路径并扩大了钾离子的积累空间,最终促进了该SiC-CDC电极内部电容钾的储存。这项工作提供了设计孔结构以提高电容性钾存储量的基础理论,并揭示了基于CDC的材料作为高性能PIB的预期阳极。
更新日期:2020-10-02
中文翻译:
迈向高性能电容式钾离子存储:一种优质的阳极材料,该材料由碳化硅衍生的碳制成且孔结构发达
使用碳基阳极的钾离子电池(PIB)是电化学能量存储的理想设备。但是,钾离子的大原子尺寸不可避免地导致巨大的体积膨胀和阳极塌陷,从而导致长期循环中严重的容量衰减。在此,采用简洁的刻蚀方法合成了具有可控孔结构的碳化硅衍生碳(SiC-CDC)。200次循环后,在0.1 A g -1的电流密度下,其最大容量为284.8 mA hg -1;在1.0 A g -1的电流密度下,其可逆容量为197.3 mA hg -1。即使经过1000次循环。提出了钾存储的混合机制以实现这一杰出性能。具有高比例的中孔体积的相互连接的孔结构为钾离子的吸附提供了丰富的活性位点,缩短了电解质的渗透路径并扩大了钾离子的积累空间,最终促进了该SiC-CDC电极内部电容钾的储存。这项工作提供了设计孔结构以提高电容性钾存储量的基础理论,并揭示了基于CDC的材料作为高性能PIB的预期阳极。