当前位置:
X-MOL 学术
›
Chem. Commun.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A review of recent work on using metal-organic frameworks to grow carbon nanotubes.
Chemical Communications ( IF 4.3 ) Pub Date : 2020-08-03 , DOI: 10.1039/d0cc04015k Xian Wang 1 , Anrui Dong 1 , Yue Hu 1 , Jinjie Qian 1 , Shaoming Huang 2
Chemical Communications ( IF 4.3 ) Pub Date : 2020-08-03 , DOI: 10.1039/d0cc04015k Xian Wang 1 , Anrui Dong 1 , Yue Hu 1 , Jinjie Qian 1 , Shaoming Huang 2
Affiliation
Carbon nanotubes (CNTs) have long been known as a class of one-dimensional carbon nanomaterials with sp2-hybridized structures that can be constructed with a very large length-to-diameter ratio, which is significantly larger than that of any other carbon nanomaterials. It is well known that CNTs exhibit many excellent properties in mechanics, electricity, chemistry, optics, etc., and are widely used in various fields, thus attracting scientists’ attention. In this context, the development of new strategies for optimizing and synthesizing CNTs has far-reaching significance and demand. On the other hand, most metal–organic frameworks (MOFs) are microporous crystals constructed from ordered and uniform metal ions/clusters and organic linkers to obtain crystalline solids with potential porosity. Using MOF materials as precursors, hierarchical CNT-based composite materials, which are difficult to synthesize through the traditional catalyst-assisted chemical vapor deposition method, can be conveniently synthesized by thermal treatment at high temperature. In the process of converting MOFs into CNTs, MOF crystals are used as both catalysts and carbon sources, which are necessary for the growth of CNTs, and they are also used as templates and/or carriers for additional catalysts. Therefore, there are various possibilities for the thermal conversion of MOFs into CNT-based composite materials. In this review, we mainly summarize the two aspects of catalysts and synthetic strategies for MOF-derived CNT-based composite materials. Despite the rapid development in this area, there is still much space for exploration. In order to accurately control the synthesis of CNTs, we should deeply explore the thermal conversion process and mechanism for the conversion of MOFs into CNTs.
中文翻译:
使用金属有机框架生长碳纳米管的最新研究综述。
碳纳米管(CNT)一直是一类具有sp 2杂化结构的一维碳纳米材料,可以以非常大的长径比构造,远大于任何其他碳纳米材料。众所周知,CNT在力学,电学,化学,光学等方面表现出许多优异的性能。,并且广泛用于各个领域,因此吸引了科学家的注意。在这种情况下,开发优化和合成碳纳米管的新策略具有深远的意义和需求。另一方面,大多数金属有机骨架(MOF)是由有序且均匀的金属离子/团簇和有机连接基构成的微孔晶体,以获得具有潜在孔隙度的结晶固体。使用MOF材料作为前体,可以通过高温热处理方便地合成难以通过传统的催化剂辅助化学气相沉积法合成的分层的基于CNT的复合材料。在将MOF转化为CNT的过程中,MOF晶体既用作催化剂,又用作碳源,这对于CNT的生长是必不可少的,它们还可用作其他催化剂的模板和/或载体。因此,存在将MOF热转化为基于CNT的复合材料的各种可能性。在这篇综述中,我们主要总结了MOF衍生的CNT基复合材料的催化剂和合成策略的两个方面。尽管该领域发展迅速,但仍有很大的探索空间。为了准确地控制CNT的合成,我们应深入探索MOF转化为CNT的热转化过程和机理。我们主要总结了MOF衍生的CNT基复合材料的催化剂和合成策略的两个方面。尽管该领域发展迅速,但仍有很大的探索空间。为了准确地控制CNT的合成,我们应深入探索MOF转化为CNT的热转化过程和机理。我们主要总结了MOF衍生的CNT基复合材料的催化剂和合成策略的两个方面。尽管该领域发展迅速,但仍有很大的探索空间。为了准确地控制CNT的合成,我们应深入探索MOF转化为CNT的热转化过程和机理。
更新日期:2020-09-18
中文翻译:
使用金属有机框架生长碳纳米管的最新研究综述。
碳纳米管(CNT)一直是一类具有sp 2杂化结构的一维碳纳米材料,可以以非常大的长径比构造,远大于任何其他碳纳米材料。众所周知,CNT在力学,电学,化学,光学等方面表现出许多优异的性能。,并且广泛用于各个领域,因此吸引了科学家的注意。在这种情况下,开发优化和合成碳纳米管的新策略具有深远的意义和需求。另一方面,大多数金属有机骨架(MOF)是由有序且均匀的金属离子/团簇和有机连接基构成的微孔晶体,以获得具有潜在孔隙度的结晶固体。使用MOF材料作为前体,可以通过高温热处理方便地合成难以通过传统的催化剂辅助化学气相沉积法合成的分层的基于CNT的复合材料。在将MOF转化为CNT的过程中,MOF晶体既用作催化剂,又用作碳源,这对于CNT的生长是必不可少的,它们还可用作其他催化剂的模板和/或载体。因此,存在将MOF热转化为基于CNT的复合材料的各种可能性。在这篇综述中,我们主要总结了MOF衍生的CNT基复合材料的催化剂和合成策略的两个方面。尽管该领域发展迅速,但仍有很大的探索空间。为了准确地控制CNT的合成,我们应深入探索MOF转化为CNT的热转化过程和机理。我们主要总结了MOF衍生的CNT基复合材料的催化剂和合成策略的两个方面。尽管该领域发展迅速,但仍有很大的探索空间。为了准确地控制CNT的合成,我们应深入探索MOF转化为CNT的热转化过程和机理。我们主要总结了MOF衍生的CNT基复合材料的催化剂和合成策略的两个方面。尽管该领域发展迅速,但仍有很大的探索空间。为了准确地控制CNT的合成,我们应深入探索MOF转化为CNT的热转化过程和机理。