当前位置:
X-MOL 学术
›
ACS Photonics
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Extremely Confined Acoustic Phonon Polaritons in Monolayer-hBN/Metal Heterostructures for Strong Light–Matter Interactions
ACS Photonics ( IF 6.5 ) Pub Date : 2020-07-31 , DOI: 10.1021/acsphotonics.0c00981 Zhu Yuan 1 , Runkun Chen 1 , Peining Li 1 , Alexey Y. Nikitin 2, 3 , Rainer Hillenbrand 3, 4 , Xinliang Zhang 1
ACS Photonics ( IF 6.5 ) Pub Date : 2020-07-31 , DOI: 10.1021/acsphotonics.0c00981 Zhu Yuan 1 , Runkun Chen 1 , Peining Li 1 , Alexey Y. Nikitin 2, 3 , Rainer Hillenbrand 3, 4 , Xinliang Zhang 1
Affiliation
Phonon polaritons in polar van der Waals materials enable strong electromagnetic-field confinement and enhancement for deeply subwavelength scale light-matter interactions. Here we propose and theoretically study acoustic phonon polaritons (APhPs) supported by a monolayer of hexagonal boron nitride (hBN) located at a few nanometers distance above a metal substrate. Compared to conventional hBN phonon polaritons, APhPs exhibit much larger polariton confinement, stronger near-field enhancement, and slower group velocity, altogether with nearly identical polariton lifetimes. These remarkable properties allow APhP-based nanoresonators to significantly enhance vibrational fingerprints of subnanometer-thick molecule layers, achieving strong coupling between molecular vibrations and APhP modes. Our work demonstrates the great potential of APhPs for exploring strong light–matter interactions at an extremely deep subwavelength-scale.
中文翻译:
单层-hBN /金属异质结构中的极有限声声子极化子,用于强光-物质相互作用
极性范德华材料中的声子极化子可实现强电磁场限制并增强深亚波长尺度的光物质相互作用。在这里,我们提出并理论上研究由六方氮化硼(hBN)单层支撑的声子极化子(APhPs),该六层氮化硼位于金属基板上方几纳米的距离处。与传统的hBN声子极化子相比,APhPs具有更大的极化子限制,更强的近场增强和较慢的群速度,以及几乎相同的极化子寿命。这些非凡的特性使基于APhP的纳米谐振器能够显着增强亚纳米级分子层的振动指纹,从而实现分子振动与APhP模式之间的强耦合。
更新日期:2020-09-16
中文翻译:
单层-hBN /金属异质结构中的极有限声声子极化子,用于强光-物质相互作用
极性范德华材料中的声子极化子可实现强电磁场限制并增强深亚波长尺度的光物质相互作用。在这里,我们提出并理论上研究由六方氮化硼(hBN)单层支撑的声子极化子(APhPs),该六层氮化硼位于金属基板上方几纳米的距离处。与传统的hBN声子极化子相比,APhPs具有更大的极化子限制,更强的近场增强和较慢的群速度,以及几乎相同的极化子寿命。这些非凡的特性使基于APhP的纳米谐振器能够显着增强亚纳米级分子层的振动指纹,从而实现分子振动与APhP模式之间的强耦合。