当前位置:
X-MOL 学术
›
Food Hydrocoll.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Regulating structural and mechanical properties of pectin reinforced liposomes at fluid/solid interface
Food Hydrocolloids ( IF 11.0 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.foodhyd.2020.106225 N. Bhargavi , A. Dhathathreyan , K.J. Sreeram
Food Hydrocolloids ( IF 11.0 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.foodhyd.2020.106225 N. Bhargavi , A. Dhathathreyan , K.J. Sreeram
Abstract This work presents the design and study of pectin (PEC) reinforced Egg Lecithin (EPC) liposomes and their structural, mechanical and thermal properties at fluid/solid interface. The liposomes have been analyzed using ATR-FTIR, DSC, SAXS and Quartz crystal microbalance (QCM) with dissipation. An asymmetric melting temperature profile in DSC thermograms with increasing concentration of PEC suggested reduced co-operativity of lipids in the vesicles resulting from different populations of PEC associated lipids. QCM showed PEC stabilized EPC liposome has nearly an order higher mechanical strength compared with EPC as also seen from enhanced heat capacity in DSC. SAXS shows that the PEC locating in the lipid bilayer results in swelling in the non-polar region (~30%) and a reduction in overall bilayer thickness (~6%) compared with that of pure EPC. The nearly equal rotation correlation time τr for EPC (3.25 ± 0.18 ns) and PEC stabilized liposomes (3.20 ± 0.2 ns) from fluorescence spectroscopy suggests that PEC in lipid bilayers does not induce any structural deformations. These liposomes visualized by transmission electron microscopy and atomic force microscopy show well-defined morphology. The findings offer a new perspective on understanding the interactions between lipid molecules and biopolymers and may aid in designing stable composite delivery vehicles.
中文翻译:
在流体/固体界面调节果胶增强脂质体的结构和机械性能
摘要 这项工作介绍了果胶 (PEC) 增强的卵磷脂 (EPC) 脂质体的设计和研究及其在流体/固体界面的结构、机械和热性能。已使用 ATR-FTIR、DSC、SAXS 和石英晶体微量天平 (QCM) 对脂质体进行了分析。随着 PEC 浓度的增加,DSC 热谱图中的不对称熔化温度曲线表明囊泡中脂质的协同性降低,这是由不同的 PEC 相关脂质群引起的。QCM 表明 PEC 稳定的 EPC 脂质体与 EPC 相比具有几乎高一个数量级的机械强度,这也从 DSC 中增强的热容量看出。SAXS 表明,与纯 EPC 相比,位于脂质双层中的 PEC 导致非极性区域的膨胀 (~30%) 和整体双层厚度的减少 (~6%)。来自荧光光谱的 EPC (3.25 ± 0.18 ns) 和 PEC 稳定脂质体 (3.20 ± 0.2 ns) 的几乎相等的旋转相关时间 τr 表明脂质双层中的 PEC 不会引起任何结构变形。通过透射电子显微镜和原子力显微镜观察到的这些脂质体显示出明确的形态。这些发现为理解脂质分子和生物聚合物之间的相互作用提供了新的视角,并可能有助于设计稳定的复合递送载体。2 ns) 的荧光光谱表明脂质双层中的 PEC 不会引起任何结构变形。通过透射电子显微镜和原子力显微镜观察到的这些脂质体显示出明确的形态。这些发现为理解脂质分子和生物聚合物之间的相互作用提供了新的视角,并可能有助于设计稳定的复合递送载体。2 ns) 的荧光光谱表明脂质双层中的 PEC 不会引起任何结构变形。通过透射电子显微镜和原子力显微镜观察到的这些脂质体显示出明确的形态。这些发现为理解脂质分子和生物聚合物之间的相互作用提供了新的视角,并可能有助于设计稳定的复合递送载体。
更新日期:2021-02-01
中文翻译:
在流体/固体界面调节果胶增强脂质体的结构和机械性能
摘要 这项工作介绍了果胶 (PEC) 增强的卵磷脂 (EPC) 脂质体的设计和研究及其在流体/固体界面的结构、机械和热性能。已使用 ATR-FTIR、DSC、SAXS 和石英晶体微量天平 (QCM) 对脂质体进行了分析。随着 PEC 浓度的增加,DSC 热谱图中的不对称熔化温度曲线表明囊泡中脂质的协同性降低,这是由不同的 PEC 相关脂质群引起的。QCM 表明 PEC 稳定的 EPC 脂质体与 EPC 相比具有几乎高一个数量级的机械强度,这也从 DSC 中增强的热容量看出。SAXS 表明,与纯 EPC 相比,位于脂质双层中的 PEC 导致非极性区域的膨胀 (~30%) 和整体双层厚度的减少 (~6%)。来自荧光光谱的 EPC (3.25 ± 0.18 ns) 和 PEC 稳定脂质体 (3.20 ± 0.2 ns) 的几乎相等的旋转相关时间 τr 表明脂质双层中的 PEC 不会引起任何结构变形。通过透射电子显微镜和原子力显微镜观察到的这些脂质体显示出明确的形态。这些发现为理解脂质分子和生物聚合物之间的相互作用提供了新的视角,并可能有助于设计稳定的复合递送载体。2 ns) 的荧光光谱表明脂质双层中的 PEC 不会引起任何结构变形。通过透射电子显微镜和原子力显微镜观察到的这些脂质体显示出明确的形态。这些发现为理解脂质分子和生物聚合物之间的相互作用提供了新的视角,并可能有助于设计稳定的复合递送载体。2 ns) 的荧光光谱表明脂质双层中的 PEC 不会引起任何结构变形。通过透射电子显微镜和原子力显微镜观察到的这些脂质体显示出明确的形态。这些发现为理解脂质分子和生物聚合物之间的相互作用提供了新的视角,并可能有助于设计稳定的复合递送载体。