当前位置: X-MOL 学术J. Am. Chem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hydrogen-Bonded Organic Frameworks as A Tunable Platform for Functional Materials
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2020-07-31 , DOI: 10.1021/jacs.0c06473
Bin Wang 1, 2 , Rui-Biao Lin 2 , Zhangjing Zhang 1 , Shengchang Xiang 1 , Banglin Chen 2
Affiliation  

As a novel class of porous crystalline materials, hydrogen-bonded organic frameworks (HOFs), self-assembled from organic or metal-organic building blocks through intermolecular hydrogen bonding interactions, have attracted more and more at-tentions. Over the past decade, a number of porous HOFs have been constructed through judicious selection of H-bonding motifs, which are further enforced by other weak intermolecular interactions such as π-π stacking and van der Waals forces, and framework interpenetration. Since the H-bonds are weaker than coordinate and covalent bonds used for the construc-tion of metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs), HOFs have some unique features such as mild synthesis condition, solution processability, easy healing and regeneration. These features enable HOFs to be a tunable platform for the construction of functional materials. Here, we review the H-bonding motifs used for constructing porous HOFs and highlight some of their applications, including gas separation and storage, chiral separation and structure determi-nation, fluorescent sensing, heterogeneous catalysis, biological applications, proton conduction, photoluminescent materials, and membrane-based applications.

中文翻译:

氢键有机框架作为功能材料的可调平台

作为一类新型多孔晶体材料,由有机或金属有机结构单元通过分子间氢键相互作用自组装而成的氢键有机骨架(HOFs)越来越受到关注。在过去的十年中,通过明智地选择氢键基序构建了许多多孔 HOF,这些基序通过其他弱分子间相互作用(如 π-π 堆积和范德华力以及框架互穿)进一步增强。由于氢键比用于构建金属有机骨架 (MOF) 和共价有机骨架 (COF) 的配位键和共价键弱,因此 HOF 具有一些独特的特性,如合成条件温和、溶液可加工、易于愈合和再生。这些特性使 HOF 成为构建功能材料的可调平台。在这里,我们回顾了用于构建多孔 HOFs 的氢键基序,并重点介绍了它们的一些应用,包括气体分离和存储、手性分离和结构测定、荧光传感、多相催化、生物应用、质子传导、光致发光材料、和基于膜的应用。
更新日期:2020-07-31
down
wechat
bug