当前位置:
X-MOL 学术
›
Chem. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Structure-Driven, Ferroelectric Wake-Up Effect for Electrical Fatigue Relief
Chemistry of Materials ( IF 7.2 ) Pub Date : 2020-07-29 , DOI: 10.1021/acs.chemmater.0c01692 Teng Lu 1 , Ye Tian 1, 2, 3 , Andrew Studer 4 , Qian Li 5 , Ray L. Withers 1 , Li Jin 2 , Dehong Yu 4 , Zhuo Xu 2 , Xiaoyong Wei 2 , Yun Liu 1
Chemistry of Materials ( IF 7.2 ) Pub Date : 2020-07-29 , DOI: 10.1021/acs.chemmater.0c01692 Teng Lu 1 , Ye Tian 1, 2, 3 , Andrew Studer 4 , Qian Li 5 , Ray L. Withers 1 , Li Jin 2 , Dehong Yu 4 , Zhuo Xu 2 , Xiaoyong Wei 2 , Yun Liu 1
Affiliation
In this work, we report the first observation of a structure-driven ferroelectric (FE) wake-up effect in polycrystalline AgNbO3-based antiferroelectric (AFE) materials, by which polarization gradually goes up with an increasing cycle number of the electric field. Unlike the defect-driven FE wake-up effect broadly observed in HfO2-based thin films, this wake-up effect is associated with a phase transition from AFE to FE under low-field cycling. Doping LiTaO3 into AgNbO3 disrupts the initial long-range ordered octahedral tilting around the ⟨0 0 1⟩p direction, resulting in some local regions with a lower energy barrier between the AFE and FE phases. Therefore, under the cyclic field, the nucleation and growth of the FE phase lead to the increasing polarization. Such an intrinsic FE wake-up effect is more controllable and thus useful. We have experimentally demonstrated that such a wake-up effect enables compensation of the electrical fatigue, the fatal drawback that has significantly limited the application of FE materials in smart devices, such as non-volatile memory. We therefore believe that this work not only provides new insight into the polarization–electric field relationship of AFE materials, an important supplement to the existing antiferroelectric theory, but also potentially introduces a new strategy to solve the electrical fatigue problem for achieving fatigue-free FE devices.
中文翻译:
结构驱动的铁电唤醒效应,可缓解电疲劳
在这项工作中,我们首次报道了在多晶AgNbO 3基反铁电(AFE)材料中结构驱动的铁电(FE)唤醒效应的观察结果,该极化作用随着电场周期数的增加而逐渐上升。与在基于HfO 2的薄膜中广泛观察到的缺陷驱动的FE唤醒效应不同,这种唤醒效应与在低场循环下从AFE到FE的相变有关。掺杂的LiTaO 3到AgNbO 3个破坏初始长程有序围绕⟨001⟩八面体倾斜p方向,导致某些局部区域在AFE和FE相之间的能垒较低。因此,在循环场下,FE相的形核和生长导致极化增加。这种固有的FE唤醒效果更加可控,因此很有用。我们已经通过实验证明,这种唤醒效应能够补偿电疲劳,这一致命缺陷已严重限制了FE材料在智能设备(例如非易失性存储器)中的应用。因此,我们相信,这项工作不仅可以提供对AFE材料的极化-电场关系的新见解,是对现有反铁电理论的重要补充,而且还可能引入一种新的策略来解决电疲劳问题,从而实现无疲劳的有限元分析。设备。
更新日期:2020-08-11
中文翻译:
结构驱动的铁电唤醒效应,可缓解电疲劳
在这项工作中,我们首次报道了在多晶AgNbO 3基反铁电(AFE)材料中结构驱动的铁电(FE)唤醒效应的观察结果,该极化作用随着电场周期数的增加而逐渐上升。与在基于HfO 2的薄膜中广泛观察到的缺陷驱动的FE唤醒效应不同,这种唤醒效应与在低场循环下从AFE到FE的相变有关。掺杂的LiTaO 3到AgNbO 3个破坏初始长程有序围绕⟨001⟩八面体倾斜p方向,导致某些局部区域在AFE和FE相之间的能垒较低。因此,在循环场下,FE相的形核和生长导致极化增加。这种固有的FE唤醒效果更加可控,因此很有用。我们已经通过实验证明,这种唤醒效应能够补偿电疲劳,这一致命缺陷已严重限制了FE材料在智能设备(例如非易失性存储器)中的应用。因此,我们相信,这项工作不仅可以提供对AFE材料的极化-电场关系的新见解,是对现有反铁电理论的重要补充,而且还可能引入一种新的策略来解决电疲劳问题,从而实现无疲劳的有限元分析。设备。