当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Lithium Iron Oxide (LiFeO2) for Electroreduction of Dinitrogen to Ammonia.
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-07-29 , DOI: 10.1021/acsami.0c10991 Weicong Gu 1 , Yali Guo 1 , Qingqing Li 1 , Ye Tian 2 , Ke Chu 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-07-29 , DOI: 10.1021/acsami.0c10991 Weicong Gu 1 , Yali Guo 1 , Qingqing Li 1 , Ye Tian 2 , Ke Chu 1
Affiliation
Electrochemical nitrogen fixation offers a promising route for sustainable NH3 production, while the rational design of effective and durable electrocatalysts is urgently required for an effective nitrogen reduction reaction (NRR) process. Herein, we explore lithium iron oxide (LiFeO2) as a potential NRR catalyst. The developed LiFeO2/reduced graphene oxide (rGO) delivered a combination of both a high NH3 yield (40.5 μg h–1 mg–1) and high Faradaic efficiency (16.4%), exceeding those of nearly all the previously reported Li- and Fe-based catalysts. Theoretical computations showed that Fe and Li atoms on the LiFeO2 (111) facet synergistically activated N2 while Fe atoms served as the key active centers. Meanwhile, the undesired HER can be well impeded on both Fe and Li atoms to enable a high NRR selectivity.
中文翻译:
氧化锂铁(LiFeO2),用于将二氮电还原为氨。
电化学固氮技术为可持续的NH 3生产提供了一条有希望的途径,而有效的氮还原反应(NRR)工艺迫切需要有效和耐用的电催化剂的合理设计。在本文中,我们探索锂铁氧化物(LiFeO 2)作为潜在的NRR催化剂。发达的LiFeO 2 /还原氧化石墨烯(rGO )兼具高NH 3产量(40.5μgh –1 mg –1)和高法拉第效率(16.4%)的组合,几乎超过了以前报道的所有Li-O和铁基催化剂。理论计算表明,LiFeO 2(111)面上的Fe和Li原子可协同激活N2,而Fe原子是关键的活性中心。同时,不需要的HER可以很好地阻碍Fe和Li原子,从而实现较高的NRR选择性。
更新日期:2020-08-19
中文翻译:
氧化锂铁(LiFeO2),用于将二氮电还原为氨。
电化学固氮技术为可持续的NH 3生产提供了一条有希望的途径,而有效的氮还原反应(NRR)工艺迫切需要有效和耐用的电催化剂的合理设计。在本文中,我们探索锂铁氧化物(LiFeO 2)作为潜在的NRR催化剂。发达的LiFeO 2 /还原氧化石墨烯(rGO )兼具高NH 3产量(40.5μgh –1 mg –1)和高法拉第效率(16.4%)的组合,几乎超过了以前报道的所有Li-O和铁基催化剂。理论计算表明,LiFeO 2(111)面上的Fe和Li原子可协同激活N2,而Fe原子是关键的活性中心。同时,不需要的HER可以很好地阻碍Fe和Li原子,从而实现较高的NRR选择性。