当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Strain-Controlled Superconductivity in Few-Layer NbSe2.
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-07-28 , DOI: 10.1021/acsami.0c08804 Cliff Chen 1 , Protik Das 2 , Ece Aytan 2 , Weimin Zhou 1 , Justin Horowitz 1 , Biswarup Satpati 3 , Alexander A Balandin 2 , Roger K Lake 2 , Peng Wei 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-07-28 , DOI: 10.1021/acsami.0c08804 Cliff Chen 1 , Protik Das 2 , Ece Aytan 2 , Weimin Zhou 1 , Justin Horowitz 1 , Biswarup Satpati 3 , Alexander A Balandin 2 , Roger K Lake 2 , Peng Wei 1
Affiliation
The controlled tunability of superconductivity in low-dimensional materials may enable new quantum devices. Particularly in triplet or topological superconductors, tunneling devices such as Josephson junctions, etc., can demonstrate exotic functionalities. The tunnel barrier, an insulating or normal material layer separating two superconductors, is a key component for the junctions. Thin layers of NbSe2 have been shown as a superconductor with strong spin orbit coupling, which can give rise to topological superconductivity if driven by a large magnetic exchange field. Here we demonstrate the superconductor–insulator transitions in epitaxially grown few-layer NbSe2 with wafer-scale uniformity on insulating substrates. We provide the electrical transport, Raman spectroscopy, cross-sectional transmission electron microscopy, and X-ray diffraction characterizations of the insulating phase. We show that the superconductor–insulator transition is driven by strain, which also causes characteristic energy shifts of the Raman modes. Our observation paves the way for high-quality heterojunction tunnel barriers to be seamlessly built into epitaxial NbSe2 itself, thereby enabling highly scalable tunneling devices for superconductor-based quantum electronics.
中文翻译:
几层NbSe2中的应变控制超导。
低维材料中超导性的可控可调性可能会启用新的量子器件。特别是在三重态或拓扑超导体中,隧道装置(例如约瑟夫森结)等可以显示出奇特的功能。隧道势垒是将两个超导体隔开的绝缘层或常规材料层,是结点的关键组件。NbSe 2的薄层已显示为具有强自旋轨道耦合的超导体,如果受到大的磁场交换,则可以产生拓扑超导性。在这里,我们证明了外延生长的几层NbSe 2中的超导体-绝缘体跃迁在绝缘基板上具有晶圆级均匀性。我们提供了绝缘相的电传输,拉曼光谱,截面透射电子显微镜和X射线衍射特性。我们表明,超导体-绝缘体的跃迁是由应变驱动的,这也引起拉曼模式的特征能量转移。我们的观察为高质量的异质结隧道势垒无缝地构建在外延NbSe 2本身中铺平了道路,从而为基于超导体的量子电子学实现了高度可扩展的隧道器件。
更新日期:2020-08-26
中文翻译:
几层NbSe2中的应变控制超导。
低维材料中超导性的可控可调性可能会启用新的量子器件。特别是在三重态或拓扑超导体中,隧道装置(例如约瑟夫森结)等可以显示出奇特的功能。隧道势垒是将两个超导体隔开的绝缘层或常规材料层,是结点的关键组件。NbSe 2的薄层已显示为具有强自旋轨道耦合的超导体,如果受到大的磁场交换,则可以产生拓扑超导性。在这里,我们证明了外延生长的几层NbSe 2中的超导体-绝缘体跃迁在绝缘基板上具有晶圆级均匀性。我们提供了绝缘相的电传输,拉曼光谱,截面透射电子显微镜和X射线衍射特性。我们表明,超导体-绝缘体的跃迁是由应变驱动的,这也引起拉曼模式的特征能量转移。我们的观察为高质量的异质结隧道势垒无缝地构建在外延NbSe 2本身中铺平了道路,从而为基于超导体的量子电子学实现了高度可扩展的隧道器件。