当前位置:
X-MOL 学术
›
Electroanalysis
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Performance Evaluation of Graphene Oxide Based Co3O4@GO, MnO2@GO and Co3O4/MnO2@GO Electrodes for Supercapacitors
Electroanalysis ( IF 2.7 ) Pub Date : 2020-07-28 , DOI: 10.1002/elan.202060262 Raphael Obodo 1 , Emmanuel Onah 2 , Hope Nsude 1 , Ada Agbogu 1 , Assumpta Nwanya 1 , ishaq ahmad 1 , Tingkai; Zhao 1 , Paul Ejikeme 1 , Malik Maaza 3 , Fabian Ezema 2
Electroanalysis ( IF 2.7 ) Pub Date : 2020-07-28 , DOI: 10.1002/elan.202060262 Raphael Obodo 1 , Emmanuel Onah 2 , Hope Nsude 1 , Ada Agbogu 1 , Assumpta Nwanya 1 , ishaq ahmad 1 , Tingkai; Zhao 1 , Paul Ejikeme 1 , Malik Maaza 3 , Fabian Ezema 2
Affiliation
Hydrothermally synthesized electrodes of Co3O4@GO, MnO2@GO and Co3O4/MnO2@GO were produced for usages in supercapacitors. Graphene oxide (GO) was incorporated in the nanocomposites used for electrodes synthesis due to its great surface area and electrical conductivity. The synergistic alliance among these composites and GO enhance electrodes performance, life span and stability. The structural properties as obtained from the X‐ray diffraction (XRD) results suggest that nanocomposites are crystalline in nature. The morphological studies indicated that the nanocomposites have platelet nanoparticles with some agglomerations. The energy bandgaps estimated for the Co3O4@GO, MnO2@GO and Co3O4/MnO2@GO are 2.38 eV, 2.05 eV and 2.33 eV respectively The electrochemical studies provided highest specific capacitance from CV using 10 mV/s scan rates and GCD using 1.0 A/g current density were 765, 1215, 1518 and 975, 1358, 1718 F/g for Co3O4@GO, MnO2@GO and Co3O4/MnO2@GO respectively. These results obviously indicate that composites perform better than single transition metal oxide and the addition of graphene oxide enhanced electrodes performance.
中文翻译:
石墨烯氧化物超级电容器用Co3O4 @ GO,MnO2 @ GO和Co3O4 / MnO2 @ GO电极的性能评估
制备了Co 3 O 4 @ GO,MnO 2 @GO和Co 3 O 4 / MnO 2 @GO的水热合成电极用于超级电容器。由于其大的表面积和导电性,氧化石墨烯(GO)被掺入用于电极合成的纳米复合材料中。这些复合材料和GO之间的协同联盟提高了电极性能,寿命和稳定性。从X射线衍射(XRD)结果获得的结构性质表明,纳米复合材料本质上是晶体。形态学研究表明,纳米复合材料具有片状聚集的血小板纳米颗粒。Co 3的能带隙估计O 4 @ GO,MnO 2 @GO和Co 3 O 4 / MnO 2 @GO分别为2.38 eV,2.05 eV和2.33 eV电化学研究提供了使用10 mV / s扫描速率的CV和使用1.0 A的GCD的最高比电容。对于Co 3 O 4 @ GO,MnO 2 @GO和Co 3 O 4 / MnO 2 @ GO,/ g电流密度分别为765、1215、1518和975、1358、1718 F / g 。这些结果显然表明,复合材料的性能优于单过渡金属氧化物,并且添加氧化石墨烯可增强电极性能。
更新日期:2020-07-28
中文翻译:
石墨烯氧化物超级电容器用Co3O4 @ GO,MnO2 @ GO和Co3O4 / MnO2 @ GO电极的性能评估
制备了Co 3 O 4 @ GO,MnO 2 @GO和Co 3 O 4 / MnO 2 @GO的水热合成电极用于超级电容器。由于其大的表面积和导电性,氧化石墨烯(GO)被掺入用于电极合成的纳米复合材料中。这些复合材料和GO之间的协同联盟提高了电极性能,寿命和稳定性。从X射线衍射(XRD)结果获得的结构性质表明,纳米复合材料本质上是晶体。形态学研究表明,纳米复合材料具有片状聚集的血小板纳米颗粒。Co 3的能带隙估计O 4 @ GO,MnO 2 @GO和Co 3 O 4 / MnO 2 @GO分别为2.38 eV,2.05 eV和2.33 eV电化学研究提供了使用10 mV / s扫描速率的CV和使用1.0 A的GCD的最高比电容。对于Co 3 O 4 @ GO,MnO 2 @GO和Co 3 O 4 / MnO 2 @ GO,/ g电流密度分别为765、1215、1518和975、1358、1718 F / g 。这些结果显然表明,复合材料的性能优于单过渡金属氧化物,并且添加氧化石墨烯可增强电极性能。