当前位置:
X-MOL 学术
›
Angew. Chem. Int. Ed.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Ammonia Oxidation Enhanced by Photopotential Generated by Plasmonic Excitation of a Bimetallic Electrocatalyst
Angewandte Chemie International Edition ( IF 16.1 ) Pub Date : 2020-07-27 , DOI: 10.1002/anie.202007202 Jun Wang 1 , Jaeyoung Heo 2 , Changqiang Chen 3 , Andrew J. Wilson 1 , Prashant K. Jain 1, 4
Angewandte Chemie International Edition ( IF 16.1 ) Pub Date : 2020-07-27 , DOI: 10.1002/anie.202007202 Jun Wang 1 , Jaeyoung Heo 2 , Changqiang Chen 3 , Andrew J. Wilson 1 , Prashant K. Jain 1, 4
Affiliation
We study how visible light influences the activity of an electrocatalyst composed of Au and Pt nanoparticles. The bimetallic composition imparts a dual functionality: the Pt component catalyzes the electrochemical oxidation of ammonia to liberate hydrogen and the Au component absorbs visible light by the excitation of localized surface plasmon resonances. Under visible‐light excitation, this catalyst exhibits enhanced electrochemical ammonia oxidation kinetics, outperforming previously reported electrochemical schemes. We trace the enhancement to a photochemical potential resulting from electron–hole carriers generated in the electrocatalyst by plasmonic excitation. The photopotential responsible for enhanced kinetics scales linearly with the light intensity—a general design principle for eliciting superlative photoelectrochemical performance from catalysts comprised of plasmonic metals or hybrids. We also determine a photochemical conversion coefficient.
中文翻译:
等离子体激发双金属电催化剂产生的电位增强氨氧化
我们研究可见光如何影响由金和铂纳米粒子组成的电催化剂的活性。双金属组合物具有双重功能:Pt组分催化氨的电化学氧化以释放氢,Au组分通过激发局部表面等离振子共振来吸收可见光。在可见光激发下,该催化剂表现出增强的电化学氨氧化动力学,优于先前报道的电化学方案。我们追踪到增强作用是由于等离子体激发在电催化剂中产生的电子空穴载流子而产生的光化学势。负责增强动力学的光势与光强度呈线性比例关系,这是从等离激元金属或杂化金属构成的催化剂中获得最高级光电化学性能的一般设计原理。我们还确定了光化学转化系数。
更新日期:2020-10-05
中文翻译:
等离子体激发双金属电催化剂产生的电位增强氨氧化
我们研究可见光如何影响由金和铂纳米粒子组成的电催化剂的活性。双金属组合物具有双重功能:Pt组分催化氨的电化学氧化以释放氢,Au组分通过激发局部表面等离振子共振来吸收可见光。在可见光激发下,该催化剂表现出增强的电化学氨氧化动力学,优于先前报道的电化学方案。我们追踪到增强作用是由于等离子体激发在电催化剂中产生的电子空穴载流子而产生的光化学势。负责增强动力学的光势与光强度呈线性比例关系,这是从等离激元金属或杂化金属构成的催化剂中获得最高级光电化学性能的一般设计原理。我们还确定了光化学转化系数。