当前位置: X-MOL 学术J. Environ. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Novel static mixers based on triply periodic minimal surface (TPMS) architectures
Journal of Environmental Chemical Engineering ( IF 7.4 ) Pub Date : 2020-07-17 , DOI: 10.1016/j.jece.2020.104289
Mariam Ouda , Oraib Al-Ketan , Nurshaun Sreedhar , Mohamed I. Hasan Ali , Rashid K. Abu Al-Rub , Seungkwan Hong , Hassan A. Arafat

Static mixers are frequently used in water treatment applications, for example as inline coagulators. A desired geometry of a static mixer is one that results in low mixing energy and high mixing efficiency. Triply periodic minimal surfaces (TPMS) are architectures which are described mathematically such that the mean curvature is zero at any point on their surface. In this work, novel static mixers based on TPMS architectures were modeled as mixers of aqueous feeds, using several computational fluid dynamics (CFD) tools and compared to the state of the art Kenics mixer. The CFD models were verified experimentally. Four TPMS geometries were studied: Gyroid, Diamond, IWP, and Primitive. The dimensionless power number was used as a metric to compare the energy requirement of the mixers, while the coefficient of variance (COV) was used to quantify their mixing efficiency. In single element mixers, three TPMS geometries; Gyroid, Diamond and IWP, outperformed the Kenics in terms of mixing energy, with a comparable or better mixing efficiency. In multiple element mixers, however, the Kenics outperformed the TPMS mixers in term of mixing efficiency, while the latter’s energy performance remained superior. Subsequent design modifications of the multi-element TPMS mixers were conducted, including the hybridization of TPMS and Kenics architectures. The changes resulted in mixing efficiencies comparable to the Kenics, but with at least 25% decrease in energy requirements. The complex, inter-connected and perfectly curved structures of the TPMS shapes are behind their high mixing and energy performance.



中文翻译:

基于三重周期最小表面(TPMS)架构的新型静态混合器

静态混合器通常用于水处理应用中,例如用作在线凝结器。静态混合器的期望几何形状是导致低混合能量和高混合效率的几何形状。三重周期性最小曲面(TPMS)是一种数学上描述的体系结构,因此平均曲率在其表面上的任何点均为零。在这项工作中,使用几种计算流体动力学(CFD)工具将基于TPMS架构的新型静态混合器建模为水性进料混合器,并与最新的Kenics混合器进行了比较。CFD模型已通过实验验证。研究了四个TPMS几何:Gyroid,Diamond,IWP和Primitive。无量纲功率数用作衡量搅拌机能量需求的指标,而变异系数(COV)用于量化其混合效率。在单元素混合器中,三个TPMS几何形状;在混合能量方面,Gyroid,Diamond和IWP优于Kenics,其混合效率相当或更高。但是,在多元素混合器中,Kenics在混合效率方面胜过TPMS混合器,而后者的能源性能仍然优越。随后对多元素TPMS混合器进行了设计修改,包括TPMS和Kenics架构的混合。这些变化导致混合效率与Kenics相当,但能量需求降低了至少25%。TPMS形状复杂,相互连接且完美弯曲的结构是其高混合和高能效的背后。在单元素混合器中,三个TPMS几何形状;在混合能量方面,Gyroid,Diamond和IWP优于Kenics,其混合效率相当或更高。但是,在多元素混合器中,Kenics在混合效率方面胜过TPMS混合器,而后者的能源性能仍然优越。随后对多元素TPMS混合器进行了设计修改,包括TPMS和Kenics架构的混合。这些变化导致混合效率与Kenics相当,但能量需求降低了至少25%。TPMS形状复杂,相互连接且完美弯曲的结构是其高混合和高能效的背后。在单元素混合器中,三个TPMS几何形状;在混合能量方面,Gyroid,Diamond和IWP优于Kenics,其混合效率相当或更高。但是,在多元素混合器中,Kenics在混合效率方面胜过TPMS混合器,而后者的能源性能仍然优越。随后对多元素TPMS混合器进行了设计修改,包括TPMS和Kenics架构的混合。这些变化导致混合效率与Kenics相当,但能量需求降低了至少25%。TPMS形状复杂,相互连接且完美弯曲的结构是其高混合和高能效的背后。具有可比或更高的混合效率。但是,在多元素混合器中,Kenics在混合效率方面胜过TPMS混合器,而后者的能源性能仍然优越。随后进行了多元素TPMS混合器的设计修改,包括TPMS和Kenics架构的混合。这些变化导致混合效率与Kenics相当,但能量需求降低了至少25%。TPMS形状复杂,相互连接且完美弯曲的结构是其高混合和高能效的背后。具有可比或更高的混合效率。但是,在多元素混合器中,Kenics在混合效率方面胜过TPMS混合器,而后者的能源性能仍然优越。随后对多元素TPMS混合器进行了设计修改,包括TPMS和Kenics架构的混合。这些变化导致混合效率与Kenics相当,但能量需求降低了至少25%。TPMS形状复杂,相互连接且完美弯曲的结构是其高混合和高能效的背后。随后对多元素TPMS混合器进行了设计修改,包括TPMS和Kenics架构的混合。这些变化导致混合效率与Kenics相当,但能量需求降低了至少25%。TPMS形状复杂,相互连接且完美弯曲的结构是其高混合和高能效的背后。随后进行了多元素TPMS混合器的设计修改,包括TPMS和Kenics架构的混合。这些变化导致混合效率与Kenics相当,但能量需求降低了至少25%。TPMS形状复杂,相互连接且完美弯曲的结构是其高混合和高能效的背后。

更新日期:2020-07-24
down
wechat
bug