当前位置: X-MOL 学术Acta. Math. Sin. Engl. Ser. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Walsh-Fourier 级数平方偏和的新异常集和收敛
Acta Mathematica Sinica, English Series ( IF 0.8 ) Pub Date : 2020-07-01 , DOI: 10.1007/s10114-020-9353-x
Elena Prestini

对于双沃尔什 - 傅立叶级数和 f ∈ L2([0, 1) × [0, 1)) 我们证明了相对于线性化最大平方偏和算子 SN(x,y)f (x, y) 的两个几乎正交的结果)。假设 N(x, y) 作为 x 和 y 的函数不递减,粗略地说,偏导数具有近似恒定的比率 $${{N_y^\prime \left({x,y} \right)} \over {N_x^\prime \left({x,y} \right)}} \cong {2^{{n_0}}}$$ 对于所有 x 和 y,其中 n0 是任何固定的非负整数。与 N(x, y) 和 n0 无关的估计值然后扩展到 Lr, 1 10。



"点击查看英文标题和摘要"

更新日期:2020-07-01
down
wechat
bug