Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Self-Formed Electronic/Ionic Conductive Fe3 S4 @ S @ 0.9Na3 SbS4 ⋅0.1NaI Composite for High-Performance Room-Temperature All-Solid-State Sodium-Sulfur Battery.
Small ( IF 13.0 ) Pub Date : 2020-07-21 , DOI: 10.1002/smll.202001574
Hongli Wan 1, 2 , Liangting Cai 1 , Yu Yao 3 , Wei Weng 1, 2 , Yuezhan Feng 4 , Jean Pierre Mwizerwa 1, 2 , Gaozhan Liu 1, 2 , Yan Yu 3, 5 , Xiayin Yao 1, 2
Small ( IF 13.0 ) Pub Date : 2020-07-21 , DOI: 10.1002/smll.202001574
Hongli Wan 1, 2 , Liangting Cai 1 , Yu Yao 3 , Wei Weng 1, 2 , Yuezhan Feng 4 , Jean Pierre Mwizerwa 1, 2 , Gaozhan Liu 1, 2 , Yan Yu 3, 5 , Xiayin Yao 1, 2
Affiliation
![]() |
Fe3S4 @ S @ 0.9Na3SbS4⋅0.1NaI composite cathode is prepared through one‐step wet‐mechanochemical milling procedure. During milling process, ionic conduction pathway is self‐formed in the composite due to the formation of 0.9Na3SbS4⋅0.1NaI electrolyte without further annealing treatment. Meanwhile, the introduction of Fe3S4 can increase the electronic conductivity of the composite cathode by one order of magnitude and nearly double enhance the ionic conductivities. Besides, the aggregation of sulfur is effectively suppressed in the obtained Fe3S4 @ S @ 0.9Na3SbS4⋅0.1NaI composite, which will enhance the contact between sulfur and 0.9Na3SbS4⋅0.1NaI electrolyte, leading to a decreased interfacial resistance and improving the electrochemical kinetics of sulfur. Therefore, the resultant all‐solid‐state sodium–sulfur battery employing Fe3S4 @ S @ 0.9Na3SbS4⋅0.1NaI composite cathode shows discharge capacity of 808.7 mAh g−1 based on Fe3S4@S and a normalized discharge capacity of 1040.5 mAh g−1 for element S at 100 mA g−1 for 30 cycles at room temperature. Moreover, the battery also exhibits excellent cycling stability with a reversible capacity of 410 mAh g−1 at 500 mA g−1 for 50 cycles, and superior rate capability with capacities of 952.4, 796.7, 513.7, and 445.6 mAh g−1 at 50, 100, 200, and 500 mA g−1, respectively. This facile strategy for sulfur‐based composite cathode is attractive for achieving room‐temperature sodium–sulfur batteries with superior electrochemical performance.
中文翻译:
自成型电子/离子导电Fe3 S4 @ S @ 0.9Na3 SbS4⋅0.1NaI复合材料,用于高性能室温全固态钠硫电池。
的Fe 3小号4 @小号@ 0.9NA 3的SbS 4 ⋅0.1NaI复合阴极是通过一步法湿式机械化学粉碎过程制备。在研磨过程中,离子传导通路是自形成在复合材料由于地层0.9NA的3的SbS 4 ⋅0.1NaI电解质无需进一步退火处理。同时,Fe 3 S 4的引入可以将复合阴极的电子电导率提高一个数量级,并且几乎使离子电导率提高一倍。此外,在得到的Fe 3 S 4 @ S @ 0.9Na 3中有效抑制了硫的聚集。的SbS 4 ⋅0.1NaI复合,这将提高硫和0.9NA之间的接触3的SbS 4 ⋅0.1NaI电解质,导致降低的界面电阻并提高硫的电化学动力学。因此,所得的全固态采用铁钠硫电池3小号4个 @小号@ 0.9NA 3的SbS 4 ⋅0.1NaI的808.7毫安克复合阴极显示放电容量-1基于Fe 3小号4个@S和一个的1040.5毫安克归一化的放电容量-1为元件S在100mA克-1在室温下放置30个循环。此外,电池也表现出与的410毫安g的可逆容量优异的循环稳定性-1以500mA克-1 50个周期,并用513.7的952.4能力,796.7,优异的倍率性能,并445.6毫安克-1在50分别为100、200和500 mA g -1。这种基于硫的复合阴极的简便策略对于获得具有优异电化学性能的室温钠硫电池具有吸引力。
更新日期:2020-08-27
中文翻译:

自成型电子/离子导电Fe3 S4 @ S @ 0.9Na3 SbS4⋅0.1NaI复合材料,用于高性能室温全固态钠硫电池。
的Fe 3小号4 @小号@ 0.9NA 3的SbS 4 ⋅0.1NaI复合阴极是通过一步法湿式机械化学粉碎过程制备。在研磨过程中,离子传导通路是自形成在复合材料由于地层0.9NA的3的SbS 4 ⋅0.1NaI电解质无需进一步退火处理。同时,Fe 3 S 4的引入可以将复合阴极的电子电导率提高一个数量级,并且几乎使离子电导率提高一倍。此外,在得到的Fe 3 S 4 @ S @ 0.9Na 3中有效抑制了硫的聚集。的SbS 4 ⋅0.1NaI复合,这将提高硫和0.9NA之间的接触3的SbS 4 ⋅0.1NaI电解质,导致降低的界面电阻并提高硫的电化学动力学。因此,所得的全固态采用铁钠硫电池3小号4个 @小号@ 0.9NA 3的SbS 4 ⋅0.1NaI的808.7毫安克复合阴极显示放电容量-1基于Fe 3小号4个@S和一个的1040.5毫安克归一化的放电容量-1为元件S在100mA克-1在室温下放置30个循环。此外,电池也表现出与的410毫安g的可逆容量优异的循环稳定性-1以500mA克-1 50个周期,并用513.7的952.4能力,796.7,优异的倍率性能,并445.6毫安克-1在50分别为100、200和500 mA g -1。这种基于硫的复合阴极的简便策略对于获得具有优异电化学性能的室温钠硫电池具有吸引力。