当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Multifunctional Artificial Artery from Direct 3D Printing with Built‐In Ferroelectricity and Tissue‐Matching Modulus for Real‐Time Sensing and Occlusion Monitoring
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2020-07-21 , DOI: 10.1002/adfm.202002868 Jun Li , Yin Long , Fan Yang 1 , Hao Wei 2 , Ziyi Zhang 1 , Yizhan Wang 1 , Jingyu Wang 1 , Cheng Li 3 , Corey Carlos 1 , Yutao Dong 1 , Yongjun Wu 3 , Weibo Cai 2 , Xudong Wang 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2020-07-21 , DOI: 10.1002/adfm.202002868 Jun Li , Yin Long , Fan Yang 1 , Hao Wei 2 , Ziyi Zhang 1 , Yizhan Wang 1 , Jingyu Wang 1 , Cheng Li 3 , Corey Carlos 1 , Yutao Dong 1 , Yongjun Wu 3 , Weibo Cai 2 , Xudong Wang 1
Affiliation
Treating vascular grafts failure requires complex surgery procedures and is associated with high risks. A real‐time monitoring vascular system enables quick and reliable identification of complications and initiates safer treatments early. Here, an electric fieldassisted 3D printing technology is developed to fabricate in situ‐poled ferroelectric artificial arteries that offer battery‐free real‐time blood pressure sensing and occlusion monitoring capability. The functional artery architecture is made possible by the development of a ferroelectric biocomposite which can be quickly polarized during printing and reshaped into devised objects. The synergistic effect from the potassium sodium niobite particles and the polyvinylidene fluoride polymer matrix yields a superb piezoelectric performance (bulk‐scale d33 > 12 pC N−1). The sinusoidal architecture brings the mechanical modulus close to the level of blood vessels. The desired piezoelectric and mechanical properties of the artificial artery provide an excellent sensitivity to pressure change (0.306 mV mmHg−1, R2 > 0.99) within the range of human blood pressure (11.25–225.00 mmHg). The high pressure sensitivity and the ability to detect subtle vessel motion pattern change enable early detection of partial occlusion (e.g., thrombosis), allowing for preventing grafts failure. This work demonstrates a promising strategy of incorporating multifunctionality to artificial biological systems for smart healthcare systems.
中文翻译:
直接 3D 打印的多功能人工动脉,内置铁电性和组织匹配模量,用于实时传感和闭塞监测
治疗血管移植失败需要复杂的手术程序,并且风险较高。实时监测血管系统可以快速可靠地识别并发症,并尽早开始更安全的治疗。这里开发了一种电场辅助 3D 打印技术来制造原位铁电人工动脉,该动脉提供无电池实时血压传感和闭塞监测功能。功能性动脉结构是通过铁电生物复合材料的开发而实现的,该复合材料可以在打印过程中快速极化并重新塑造成设计的物体。铌酸钾钠颗粒和聚偏二氟乙烯聚合物基体的协同效应产生了优异的压电性能(体尺度d 33 > 12 pC N -1)。正弦结构使机械模量接近血管水平。人造动脉所需的压电和机械特性 在人体血压范围(11.25–225.00 mmHg)内提供了对压力变化(0.306 mV mmHg -1,R 2 > 0.99)的出色灵敏度。高压敏感性和检测细微血管运动模式变化的能力能够及早检测部分闭塞(例如血栓形成),从而防止移植失败。这项工作展示了一种将多功能性融入人工生物系统以实现智能医疗保健系统的有前景的策略。
更新日期:2020-09-25
中文翻译:
直接 3D 打印的多功能人工动脉,内置铁电性和组织匹配模量,用于实时传感和闭塞监测
治疗血管移植失败需要复杂的手术程序,并且风险较高。实时监测血管系统可以快速可靠地识别并发症,并尽早开始更安全的治疗。这里开发了一种电场辅助 3D 打印技术来制造原位铁电人工动脉,该动脉提供无电池实时血压传感和闭塞监测功能。功能性动脉结构是通过铁电生物复合材料的开发而实现的,该复合材料可以在打印过程中快速极化并重新塑造成设计的物体。铌酸钾钠颗粒和聚偏二氟乙烯聚合物基体的协同效应产生了优异的压电性能(体尺度d 33 > 12 pC N -1)。正弦结构使机械模量接近血管水平。人造动脉所需的压电和机械特性 在人体血压范围(11.25–225.00 mmHg)内提供了对压力变化(0.306 mV mmHg -1,R 2 > 0.99)的出色灵敏度。高压敏感性和检测细微血管运动模式变化的能力能够及早检测部分闭塞(例如血栓形成),从而防止移植失败。这项工作展示了一种将多功能性融入人工生物系统以实现智能医疗保健系统的有前景的策略。