当前位置: X-MOL 学术J. Mater. Chem. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A novel design of an electrolyser using a trifunctional (HER/OER/ORR) electrocatalyst for decoupled H2/O2 generation and solar to hydrogen conversion
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2020-07-20 , DOI: 10.1039/d0ta05102k
Mingrui Guo 1, 2, 3, 4 , Ling Wang 1, 2, 3, 4 , Jing Zhan 1, 2, 3, 4 , Xiuling Jiao 1, 2, 3, 4 , Dairong Chen 1, 2, 3, 4 , Ting Wang 1, 2, 3, 4
Affiliation  

Nowadays, a variety of multifunctional electrocatalysts are being developed while there is still a lack of suitable design to fully realize their multifunctionalities. Here, we propose a general, simple, two-component design of an electrolyser to replace the traditional three-component design for decoupled water splitting. Trifunctional (OER, HER and ORR) electrocatalysts (such as nickel sulfide foams with surface grown N-doped carbon nanotube arrays) are used as the gas evolution electrode to replace both the cathode and the anode, while materials with suitable redox activities (NaTi2(PO4)3 or commercial Ni(OH)2) are used as the relay electrode. In such a design, the H2/O2 evolution can be switched by reversing the current polarity, and the ORR before the HER consumes the residual O2 left in the electrolyser, guaranteeing the high purity (∼99.9%) of the as-obtained H2. With NaTi2(PO4)3 as the relay electrode and the nickel sulfide foam as the gas evolution electrode, owing to the high decoupling efficiency of the NaTi2(PO4)3 relay (97%) and the low HER/OER overpotentials of the trifunctional nickel sulfide foam, an energy conversion efficiency of up to 94.3% can be obtained for the as-assembled electrolyser at a current density of 10 mA cm−2. When combined with a commercial Si PV module with an efficiency of 14.4%, the as-designed PV-electrolysis system showed a solar-to-hydrogen conversion efficiency of up to 10.4%. Utilization of trifunctional electrocatalysts greatly reduces the complexity of the electrolyser and the overall cost for electrochemical H2 production, and these electrolysers may potentially be used to construct highly competitive water splitting systems for continuous H2 production and green energy harvesting. Our research may also bring new insights into the utilization of multifunctional electrocatalysts in other devices, such as metal–air batteries and fuel cells.

中文翻译:

使用三功能(HER / OER / ORR)电催化剂的电解器的新颖设计,用于解耦H2 / O2的产生和太阳能到氢的转化

如今,正在开发多种多功能电催化剂,而仍然缺乏合适的设计来完全实现其多功能性。在这里,我们提出了一种电解器的通用,简单的两组分设计,以代替用于解耦水分解的传统三组分设计。三功能(OER,HER和ORR)电催化剂(例如具有表面生长的N掺杂碳纳米管阵列的硫化镍泡沫)用作气体逸出电极,同时代替阴极和阳极,同时具有合适的氧化还原活性(NaTi 2(PO 43或市售Ni(OH)2)用作中继电极。在这样的设计中,H 2 / O 2可以通过反转电流极性来切换反应的发展,并且在HER消耗掉电解槽中残留的O 2之前的ORR保证了所获得的H 2的高纯度(约99.9%)。与NATI 2(PO 43作为中继电极和硫化镍泡沫作为气体放出电极,由于NATI的高解耦效率2(PO 43继电器(97%)和低HER / OER的超电势在三功能硫化镍泡沫中,组装后的电解器在10 mA cm -2的电流密度下可获得高达94.3%的能量转换效率。当与效率为14.4%的商用Si PV模块组合使用时,如此设计的PV电解系统显示出高达10.4%的太阳能转化效率。三官能电催化剂的使用极大地降低了电解器的复杂性和电化学H 2生产的总成本,并且这些电解器可潜在地用于构建高度竞争的水分解系统,以连续生产H 2和绿色能源的收集。我们的研究还可能为在其他设备(例如金属空气电池和燃料电池)中使用多功能电催化剂带来新的见解。
更新日期:2020-08-18
down
wechat
bug