当前位置:
X-MOL 学术
›
Glob. Change Biol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
The CO2 -equivalent balance of freshwater ecosystems is non-linearly related to productivity.
Global Change Biology ( IF 10.8 ) Pub Date : 2020-07-18 , DOI: 10.1111/gcb.15284 Charlotte Grasset 1 , Sebastian Sobek 1 , Kristin Scharnweber 1 , Simone Moras 1 , Holger Villwock 1 , Sara Andersson 1 , Carolin Hiller 1 , Anna C Nydahl 1 , Fernando Chaguaceda 1 , William Colom 2 , Lars J Tranvik 1
Global Change Biology ( IF 10.8 ) Pub Date : 2020-07-18 , DOI: 10.1111/gcb.15284 Charlotte Grasset 1 , Sebastian Sobek 1 , Kristin Scharnweber 1 , Simone Moras 1 , Holger Villwock 1 , Sara Andersson 1 , Carolin Hiller 1 , Anna C Nydahl 1 , Fernando Chaguaceda 1 , William Colom 2 , Lars J Tranvik 1
Affiliation
Eutrophication of fresh waters results in increased CO2 uptake by primary production, but at the same time increased emissions of CH4 to the atmosphere. Given the contrasting effects of CO2 uptake and CH4 release, the net effect of eutrophication on the CO2‐equivalent balance of fresh waters is not clear. We measured carbon fluxes (CO2 and CH4 diffusion, CH4 ebullition) and CH4 oxidation in 20 freshwater mesocosms with 10 different nutrient concentrations (total phosphorus range: mesotrophic 39 µg/L until hypereutrophic 939 µg/L) and planktivorous fish in half of them. We found that the CO2‐equivalent balance had a U‐shaped relationship with productivity, up to a threshold in hypereutrophic systems. CO2‐equivalent sinks were confined to a narrow range of net ecosystem production (NEP) between 5 and 19 mmol O2 m−3 day−1. Our findings indicate that eutrophication can shift fresh waters from sources to sinks of CO2‐equivalents due to enhanced CO2 uptake, but continued eutrophication enhances CH4 emission and transforms freshwater ecosystems to net sources of CO2‐equivalents to the atmosphere. Nutrient enrichment but also planktivorous fish presence increased productivity, thereby regulating the resulting CO2‐equivalent balance. Increasing planktivorous fish abundance, often concomitant with eutrophication, will consequently likely affect the CO2‐equivalent balance of fresh waters.
中文翻译:
淡水生态系统的二氧化碳当量平衡与生产力呈非线性关系。
淡水的富营养化导致初级生产增加了对CO 2的吸收,但同时增加了向大气中CH 4的排放。考虑到吸收CO 2和释放CH 4的对比作用,富营养化对淡水CO 2当量平衡的净影响尚不清楚。我们测量了20种具有10种不同养分浓度(总磷范围:中营养39 µg / L,直到富营养化939 µg / L)的淡水中膜和食蟹鱼类的碳通量(CO 2和CH 4扩散,CH 4沸腾)和CH 4氧化。其中一半。我们发现CO 2等效平衡与生产力呈U形关系,在富营养化系统中达到一个阈值。相当于CO 2的汇被限制在5至19 mmol O 2 m -3 天-1的狭窄生态系统净产量(NEP)范围内。我们的发现表明,富营养化可以通过增加对CO 2的吸收而将淡水从源头转移到CO 2当量的汇,但持续的富营养化可以增加CH 4的排放,并将淡水生态系统转化为大气中的CO 2当量的净来源。营养丰富,但鳞状鱼类的存在提高了生产力,从而调节了最终的一氧化碳2等效余额。鳞翅目鱼类的丰度增加,通常伴随着富营养化,因此可能会影响淡水的CO 2当量平衡。
更新日期:2020-09-23
中文翻译:
淡水生态系统的二氧化碳当量平衡与生产力呈非线性关系。
淡水的富营养化导致初级生产增加了对CO 2的吸收,但同时增加了向大气中CH 4的排放。考虑到吸收CO 2和释放CH 4的对比作用,富营养化对淡水CO 2当量平衡的净影响尚不清楚。我们测量了20种具有10种不同养分浓度(总磷范围:中营养39 µg / L,直到富营养化939 µg / L)的淡水中膜和食蟹鱼类的碳通量(CO 2和CH 4扩散,CH 4沸腾)和CH 4氧化。其中一半。我们发现CO 2等效平衡与生产力呈U形关系,在富营养化系统中达到一个阈值。相当于CO 2的汇被限制在5至19 mmol O 2 m -3 天-1的狭窄生态系统净产量(NEP)范围内。我们的发现表明,富营养化可以通过增加对CO 2的吸收而将淡水从源头转移到CO 2当量的汇,但持续的富营养化可以增加CH 4的排放,并将淡水生态系统转化为大气中的CO 2当量的净来源。营养丰富,但鳞状鱼类的存在提高了生产力,从而调节了最终的一氧化碳2等效余额。鳞翅目鱼类的丰度增加,通常伴随着富营养化,因此可能会影响淡水的CO 2当量平衡。