当前位置: X-MOL 学术Environ. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Novel Syntrophic Isovalerate-Degrading Bacteria and Their Energetic Cooperation with Methanogens in Methanogenic Chemostats.
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2020-07-15 , DOI: 10.1021/acs.est.0c01840
Ya-Ting Chen 1, 2 , Yan Zeng 2 , Jie Li 2 , Xin-Yu Zhao 2 , Yue Yi 2 , Min Gou 2 , Yoichi Kamagata 3 , Takashi Narihiro 3 , Masaru Konishi Nobu 3 , Yue-Qin Tang 2
Affiliation  

Isovalerate is an important intermediate in anaerobic degradation of proteins/amino acids. Little is known about how this compound is degraded due to challenges in cultivation and characterization of isovalerate-degrading bacteria, which are thought to symbiotically depend on methanogenic archaea. In this study, we successfully enriched novel syntrophic isovalerate degraders (uncultivated Clostridiales and Syntrophaceae members) through operation of mesophilic and thermophilic isovalerate-fed anaerobic reactors. Metagenomics- and metatranscriptomics-based metabolic reconstruction of novel putative syntrophic isovalerate metabolizers uncovered the catabolic pathway and byproducts (i.e., acetate, H2, and formate) of isovalerate degradation, mechanisms for electron transduction from isovalerate degradation to H2 and formate generation (via electron transfer flavoprotein; ETF), and biosynthetic metabolism. The identified organisms tended to prefer formate-based interspecies electron transfer with methanogenic partners. The byproduct acetate was further converted to CH4 and CO2 by either Methanothrix (mesophilic) and Methanosarcina (thermophilic), which employed different approaches for acetate degradation. This study presents insights into novel mesophilic and thermophilic isovalerate degraders and their interactions with methanogens.

中文翻译:

新型同养菌降解异戊酸的细菌及其在产甲烷化学恒化器中与产甲烷菌的能量合作。

异戊酸酯是蛋白质/氨基酸厌氧降解的重要中间体。由于异戊酸降解细菌的培养和表征方面的挑战,人们对这种化合物如何降解的了解甚少,据认为这是共生依赖产甲烷的古细菌。在这项研究中,我们通过操作嗜温和嗜热异戊酸厌氧反应器成功地富集了新型的同养异戊酸降解物(未培养的梭菌和同食菌科成员)。基于代谢组学和代谢组学的新型假定代谢的异戊酸代谢物的代谢重建揭示了异戊酸降解的分解代谢途径和副产物(即,乙酸盐,H 2和甲酸盐),从异戊酸降解至H的电子转导机制2,产生甲酸(通过电子转移黄素蛋白; ETF),以及生物合成代谢。鉴定出的生物倾向于与产甲烷伙伴一起进行基于甲酸盐的种间电子转移。副产物乙酸进一步转化为CH 4和CO 2通过任一Methanothrix(嗜中温)和甲烷(嗜热),其用于降解醋酸不同的方法。这项研究提供了新的嗜温和嗜热异戊酸降解物及其与产甲烷菌相互作用的见解。
更新日期:2020-08-04
down
wechat
bug