当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
From Passive Inorganic Oxides to Active Matters of Micro/Nanomotors
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2020-07-15 , DOI: 10.1002/adfm.202003195
Wenjuan Liu 1, 2 , Xiao Chen 1 , Xiaolong Lu 3 , Joseph Wang 4 , Yanan Zhang 1, 2 , Zhongwei Gu 1, 2
Affiliation  

Controllable actuation and coordinating motion of artificial self‐propelled micro/nanomotors to mimic the motile natural microorganism systems are of great significance for constructing intelligent nanoscale machines. In particular, inorganic oxide particles have shown considerable promise in implementation of synthetic micro/nanomotors, due to their unique features and active response to environmental stimuli. This work critically reviews the recent progress in inorganic oxide‐based micro/nanomotors and focuses on their propulsion response to chemical and physical stimuli, especially emphasizing and discussing operating principles in the single engine, adaptive navigation under composite‐driven powers, and intriguing collective behaviors. The impact of oxide structure, multiple fields in motion controllability, and interaction between grouped micro/nanomotors are explored. Practical applications of individual and assembled micro/nanomotors in environmental and biomedical fields are demonstrated, including the removal of pollutants, drug delivery, cancer therapy, and in vivo imaging. Finally, current challenges for the development of novel micro/nanomotors and possible constraints toward the defined structure and accumulated toxicity are discussed along with future opportunities and directions. Owing to their facile synthesis, impressive physicochemical performances, high biocompatibility, and versatile actuations, it is expected that the association of inorganic oxides with micro/nanomotors will bring new and unique capabilities to the field of active matter.

中文翻译:

从被动无机氧化物到微型/纳米电机的活性物质

人工自驱动微型/纳米电动机的可控致动和协调运动,以模仿运动的自然微生物系统,对于构建智能纳米级机器具有重要意义。特别地,由于无机氧化物颗粒的独特特征和对环境刺激的积极响应,无机氧化物颗粒在合成微型/纳米电机的实施中已显示出巨大的希望。这项工作批判性地回顾了基于无机氧化物的微型/纳米电动机的最新进展,并着重于它们对化学和物理刺激的推进响应,特别是强调并讨论了单引擎的工作原理,复合驱动功率下的自适应导航以及令人感兴趣的集体行为。 。氧化物结构的影响,运动可控性的多个领域,并探讨了分组的微型/纳米马达之间的相互作用。演示了单个和组装的微型/纳米电机在环境和生物医学领域的实际应用,包括去除污染物,药物输送,癌症治疗和体内成像。最后,与未来的机会和方向一起,讨论了新型微型/纳米电动机的发展当前面临的挑战以及对确定的结构和累积毒性的可能限制。由于它们的合成简便,令人印象深刻的理化性能,高生物相容性和通用的驱动方式,预计无机氧化物与微/纳米马达的结合将为活性物质领域带来新的独特功能。演示了单个和组装的微型/纳米电机在环境和生物医学领域的实际应用,包括去除污染物,药物输送,癌症治疗和体内成像。最后,与未来的机会和方向一起,讨论了新型微型/纳米电动机的发展当前面临的挑战以及对确定的结构和累积毒性的可能限制。由于它们的合成简便,令人印象深刻的理化性能,高生物相容性和通用的驱动方式,预计无机氧化物与微/纳米马达的结合将为活性物质领域带来新的独特功能。演示了单个和组装的微型/纳米电机在环境和生物医学领域的实际应用,包括去除污染物,药物输送,癌症治疗和体内成像。最后,与未来的机会和方向一起,讨论了新型微型/纳米电动机的发展当前面临的挑战以及对确定的结构和累积毒性的可能限制。由于它们的合成简便,令人印象深刻的理化性能,高生物相容性和通用的驱动方式,预计无机氧化物与微/纳米马达的结合将为活性物质领域带来新的独特功能。讨论了新型微型/纳米电机的当前挑战以及对确定的结构和累积毒性的可能限制,以及未来的机会和方向。由于它们的合成简便,令人印象深刻的理化性能,高生物相容性和通用的驱动方式,预计无机氧化物与微/纳米马达的结合将为活性物质领域带来新的独特功能。讨论了新型微型/纳米电机的当前挑战以及对确定的结构和累积毒性的可能限制,以及未来的机会和方向。由于它们易于合成,令人印象深刻的理化性能,高生物相容性和通用的驱动方式,预计无机氧化物与微/纳米马达的结合将为活性物质领域带来新的独特功能。
更新日期:2020-07-15
down
wechat
bug