当前位置:
X-MOL 学术
›
Prog. Nucl. Magn. Reson. Spectrosc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
NMR-based isotopic and isotopomic analysis
Progress in Nuclear Magnetic Resonance Spectroscopy ( IF 7.3 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.pnmrs.2020.07.001 Serge Akoka , Gérald S. Remaud
Progress in Nuclear Magnetic Resonance Spectroscopy ( IF 7.3 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.pnmrs.2020.07.001 Serge Akoka , Gérald S. Remaud
Molecules exist in different isotopic compositions and most of the processes, physical or chemical, in living systems cause selection between heavy and light isotopes. Thus, knowing the isotopic fractionation of the common atoms, such as H, C, N, O or S, at each step during a metabolic pathway allows the construction of a unique isotope profile that reflects its past history. Having access to the isotope abundance gives valuable clues about the (bio)chemical origin of biological or synthetic molecules. Whereas the isotope ratio measured by mass spectrometry provides a global isotope composition, quantitative NMR measures isotope ratios at individual positions within a molecule. We present here the requirements and the corresponding experimental strategies to use quantitative NMR for measuring intramolecular isotope profiles. After an introduction showing the historical evolution of NMR for measuring isotope ratios, the vocabulary and symbols - for describing the isotope content and quantifying its change - are defined. Then, the theoretical framework of very accurate quantitative NMR is presented as the principle of Isotope Ratio Measurement by NMR spectroscopy, including the practical aspects with nuclei other than 2H, that have been developed and employed to date. Lastly, the most relevant applications covering three issues, tackling counterfeiting, authentication, and forensic investigation, are presented, before giving some perspectives combining technical improvements and methodological approaches.
中文翻译:
基于核磁共振的同位素和同位素分析
分子存在于不同的同位素组成中,生命系统中的大多数物理或化学过程都会导致重同位素和轻同位素之间的选择。因此,了解常见原子(如 H、C、N、O 或 S)在代谢途径的每个步骤中的同位素分馏,可以构建反映其过去历史的独特同位素分布。获得同位素丰度可提供有关生物或合成分子的(生物)化学起源的宝贵线索。质谱法测量的同位素比率提供了整体同位素组成,而定量 NMR 测量的是分子内各个位置的同位素比率。我们在此介绍了使用定量 NMR 测量分子内同位素分布的要求和相应的实验策略。在介绍了 NMR 测量同位素比率的历史演变之后,定义了用于描述同位素含量和量化其变化的词汇和符号。然后,将非常准确的定量 NMR 的理论框架作为 NMR 光谱测量同位素比的原理,包括迄今为止已开发和使用的非 2H 核的实际方面。最后,在给出结合技术改进和方法方法的一些观点之前,介绍了涵盖三个问题的最相关应用,即打击假冒、认证和取证调查。定义了用于描述同位素含量和量化其变化的词汇和符号。然后,将非常准确的定量 NMR 的理论框架作为 NMR 光谱测量同位素比的原理,包括迄今为止已开发和使用的非 2H 核的实际方面。最后,在给出结合技术改进和方法方法的一些观点之前,介绍了涵盖三个问题的最相关应用,即打击假冒、认证和取证调查。定义了用于描述同位素含量和量化其变化的词汇和符号。然后,将非常准确的定量 NMR 的理论框架作为 NMR 光谱测量同位素比的原理,包括迄今为止已开发和使用的非 2H 核的实际方面。最后,在给出结合技术改进和方法方法的一些观点之前,介绍了涵盖三个问题的最相关应用,即打击假冒、认证和取证调查。
更新日期:2020-10-01
中文翻译:
基于核磁共振的同位素和同位素分析
分子存在于不同的同位素组成中,生命系统中的大多数物理或化学过程都会导致重同位素和轻同位素之间的选择。因此,了解常见原子(如 H、C、N、O 或 S)在代谢途径的每个步骤中的同位素分馏,可以构建反映其过去历史的独特同位素分布。获得同位素丰度可提供有关生物或合成分子的(生物)化学起源的宝贵线索。质谱法测量的同位素比率提供了整体同位素组成,而定量 NMR 测量的是分子内各个位置的同位素比率。我们在此介绍了使用定量 NMR 测量分子内同位素分布的要求和相应的实验策略。在介绍了 NMR 测量同位素比率的历史演变之后,定义了用于描述同位素含量和量化其变化的词汇和符号。然后,将非常准确的定量 NMR 的理论框架作为 NMR 光谱测量同位素比的原理,包括迄今为止已开发和使用的非 2H 核的实际方面。最后,在给出结合技术改进和方法方法的一些观点之前,介绍了涵盖三个问题的最相关应用,即打击假冒、认证和取证调查。定义了用于描述同位素含量和量化其变化的词汇和符号。然后,将非常准确的定量 NMR 的理论框架作为 NMR 光谱测量同位素比的原理,包括迄今为止已开发和使用的非 2H 核的实际方面。最后,在给出结合技术改进和方法方法的一些观点之前,介绍了涵盖三个问题的最相关应用,即打击假冒、认证和取证调查。定义了用于描述同位素含量和量化其变化的词汇和符号。然后,将非常准确的定量 NMR 的理论框架作为 NMR 光谱测量同位素比的原理,包括迄今为止已开发和使用的非 2H 核的实际方面。最后,在给出结合技术改进和方法方法的一些观点之前,介绍了涵盖三个问题的最相关应用,即打击假冒、认证和取证调查。