当前位置: X-MOL 学术ACS Biomater. Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tuning Microcapsule Shell Thickness and Structure with Silk Fibroin and Nanoparticles for Sustained Release
ACS Biomaterials Science & Engineering ( IF 5.4 ) Pub Date : 2020-07-12 , DOI: 10.1021/acsbiomaterials.0c00835
Yongfeng Wang 1 , Qingqing Cheng 2 , Jian Liu 1 , Zeeshan Tariq 1 , Zhaozhu Zheng 1 , Gang Li 1 , David L. Kaplan 3 , Xiaoqin Wang 1
Affiliation  

Microcapsules have attracted widespread interest for their unique properties in encapsulation, protection, and separation of active ingredients from the surrounding environment. However, microcapsule carriers with controllable shell thickness, permeability, good mechanical properties, and thermostability are challenging to obtain. Herein, robust and versatile composite microcapsules were fabricated using SiO2 nanoparticle-stabilized (Pickering) oil emulsions as core templates, while silk fibroin (SF) was assembled at the oil/water interface. This process resulted in the formation of physically and chemically stable microcapsules with a thick (∼800 nm) shell that protected the encapsulated ingredient from high shear forces and high temperatures during spray-drying. SiO2 nanoparticles were randomly distributed in the shell matrix after preparation, making the microcapsules mechanically robust (4.48 times higher than control samples prepared using surfactant Tween 80 instead of the SiO2 nanoparticles), as well as thermostable (retained shape to 900 °C). The microcapsules displayed tunable drug release by adjusting the SF content in the shell. Under optimal conditions (weight ratio of SiO2/SF = 7:10, corn oil content about 55 wt %), a model drug (curcumin) was encapsulated in the SF microcapsules with an encapsulation efficiency up to 95%. The in vitro drug release from these SF microcapsules lasted longer than control microcapsules, demonstrating the capability of these novel microcapsules in sustaining drug release.

中文翻译:

用丝素蛋白和纳米颗粒调节微胶囊壳的厚度和结构以实现缓释

微囊由于其在封装,保护和从周围环境中分离有效成分方面的独特性能而引起了广泛的关注。然而,具有可控的壳厚度,渗透性,良好的机械性能和热稳定性的微胶囊载体难以获得。在此,使用SiO 2纳米颗粒稳定的(Pickering)油乳剂作为核心模板,制备了坚固而通用的复合微胶囊,而丝素蛋白(SF)则在油/水界面处组装。该过程导致形成具有厚壳(约800 nm)的物理和化学稳定的微胶囊,该壳在喷雾干燥过程中保护被包封的成分不受高剪切力和高温的影响。二氧化硅2纳米粒子在制备后随机分布在壳基质中,从而使微囊具有机械强度(比使用表面活性剂Tween 80代替SiO 2纳米粒子制备的对照样品高4.48倍),并且具有热稳定性(保持形状至900°C)。通过调节壳中的SF含量,微胶囊显示出可调节的药物释放。在最佳条件下(SiO 2 / SF的重量比= 7:10,玉米油含量约为55 wt%),将模型药物(姜黄素)封装在SF微胶囊中,封装效率高达95%。这些SF微胶囊的体外药物释放持续时间比对照微胶囊长,这证明了这些新型微胶囊在维持药物释放方面的能力。
更新日期:2020-08-10
down
wechat
bug