Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Preparation of a Flexible Superhydrophobic Surface and Its Wetting Mechanism Based on Fractal Theory.
Langmuir ( IF 3.7 ) Pub Date : 2020-07-08 , DOI: 10.1021/acs.langmuir.0c00823 Guo Jiang 1 , Jinhuan Hu 1 , Liang Chen 1
Langmuir ( IF 3.7 ) Pub Date : 2020-07-08 , DOI: 10.1021/acs.langmuir.0c00823 Guo Jiang 1 , Jinhuan Hu 1 , Liang Chen 1
Affiliation
Substrates of the superhydrophobic surface are important for their application. Preparation of a flexible superhydrophobic surface has drawn more and more attention. In this work, a flexible substrate was made using a semicuring spray method to obtain a flexible superhydrophobic surface with excellent abrasion resistance on the surface of a room temperature vulcanized silicone rubber. Results show that under a bending condition, excellent superhydrophobic properties are still maintained. The Cassie–Baxter model and Wenzel model can be used to estimate the static water contact angle for regular roughness surfaces. There are few numerical theoretical models to predict contact angle or wetting mode for irregular micronanostructures superhydrophobic surfaces. The fractal theory can be used to transform the equation of the Wenzel model and obtain the fractal wetting theory suitable for fractal structures on irregular rough surfaces. However, this fractal-wetting model cannot be applied to the Cassie–Baxter state, which is always suitable for superhydrophobic surfaces. A new method was developed to calculate the static water contact angle of water droplets in the Cassie–Baxter model state. Using image identification and the splitting surface method, a new model is constructed based on the fractal theory. Experimental data for water contact angles on the flexible superhydrophobic surface with SiC/CNTs micronanostructures is in agreement with the simulated values.
中文翻译:
基于分形理论的柔性超疏水表面的制备及其润湿机理。
超疏水表面的基材对其应用很重要。柔性超疏水表面的制备已引起越来越多的关注。在这项工作中,使用半固化喷射法制造柔性基材,以获得在室温硫化硅橡胶的表面上具有优异耐磨性的柔性超疏水表面。结果表明,在弯曲条件下,仍保持了优异的超疏水性能。Cassie–Baxter模型和Wenzel模型可用于估计常规粗糙表面的静态水接触角。几乎没有数值理论模型来预测不规则微纳米结构超疏水表面的接触角或润湿模式。分形理论可用于转换Wenzel模型的方程,并获得适用于不规则粗糙表面上分形结构的分形润湿理论。但是,这种分形润湿模型不能应用于Cassie–Baxter状态,该状态始终适用于超疏水表面。开发了一种新方法来计算Cassie–Baxter模型状态下水滴的静态水接触角。基于分形理论,利用图像识别和裂面法建立了一个新的模型。具有SiC / CNTs纳米结构的超疏水柔性表面上水接触角的实验数据与模拟值一致。这种分形润湿模型不能应用于Cassie–Baxter状态,该状态始终适用于超疏水表面。开发了一种新方法来计算Cassie–Baxter模型状态下水滴的静态水接触角。基于分形理论,利用图像识别和表面分裂方法建立了一个新模型。具有SiC / CNTs纳米结构的超疏水柔性表面上水接触角的实验数据与模拟值一致。这种分形润湿模型不能应用于Cassie–Baxter状态,该状态始终适用于超疏水表面。开发了一种新方法来计算Cassie–Baxter模型状态下水滴的静态水接触角。基于分形理论,利用图像识别和裂面法建立了一个新的模型。具有SiC / CNTs纳米结构的超疏水柔性表面上水接触角的实验数据与模拟值一致。
更新日期:2020-07-28
中文翻译:
基于分形理论的柔性超疏水表面的制备及其润湿机理。
超疏水表面的基材对其应用很重要。柔性超疏水表面的制备已引起越来越多的关注。在这项工作中,使用半固化喷射法制造柔性基材,以获得在室温硫化硅橡胶的表面上具有优异耐磨性的柔性超疏水表面。结果表明,在弯曲条件下,仍保持了优异的超疏水性能。Cassie–Baxter模型和Wenzel模型可用于估计常规粗糙表面的静态水接触角。几乎没有数值理论模型来预测不规则微纳米结构超疏水表面的接触角或润湿模式。分形理论可用于转换Wenzel模型的方程,并获得适用于不规则粗糙表面上分形结构的分形润湿理论。但是,这种分形润湿模型不能应用于Cassie–Baxter状态,该状态始终适用于超疏水表面。开发了一种新方法来计算Cassie–Baxter模型状态下水滴的静态水接触角。基于分形理论,利用图像识别和裂面法建立了一个新的模型。具有SiC / CNTs纳米结构的超疏水柔性表面上水接触角的实验数据与模拟值一致。这种分形润湿模型不能应用于Cassie–Baxter状态,该状态始终适用于超疏水表面。开发了一种新方法来计算Cassie–Baxter模型状态下水滴的静态水接触角。基于分形理论,利用图像识别和表面分裂方法建立了一个新模型。具有SiC / CNTs纳米结构的超疏水柔性表面上水接触角的实验数据与模拟值一致。这种分形润湿模型不能应用于Cassie–Baxter状态,该状态始终适用于超疏水表面。开发了一种新方法来计算Cassie–Baxter模型状态下水滴的静态水接触角。基于分形理论,利用图像识别和裂面法建立了一个新的模型。具有SiC / CNTs纳米结构的超疏水柔性表面上水接触角的实验数据与模拟值一致。