当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Co-assembling Polysaccharide Nanocrystals and Nanofibers for Robust Chiral Iridescent Films.
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-07-08 , DOI: 10.1021/acsami.0c08571
Rui Xiong 1 , Abhishek Singh 2 , Shengtao Yu 1 , Shuaidi Zhang 1 , Hansol Lee 1 , Yaroslava G Yingling 2 , Dhriti Nepal 3 , Timothy J Bunning 3 , Vladimir V Tsukruk 1
Affiliation  

Assembling robust chiral biopolymer structures without compromising vivid optical iridescence is a grand challenge for biocomposite materials. Herein, we report a hierarchical nanocellulose nanostructure with a helicoidal organization co-assembled from chiral rigid cellulose nanocrystals (CNCs) and longer nanofibers isolated from the hydrolyzed wood pulp. This resulting highly iridescent chiral nanocellulose material is much tougher than traditional chiral CNC films. We found that the mixed nanocellulose are composed of needle-like nanocrystals and very long (up to 800 nm) flexible cellulose nanofibers (CNFs). Large-scale molecular simulation indicates that enhanced dynamic hydrogen bonding with labile networking facilitates mechanical reinforcement, owing to increased nanocrystal length, the co-assembly of nanofibrils in mixed bundles, and interchain entanglements. This study provides a novel strategy to transform the wood pulp residues into high-value-added photonic-bound polysaccharide materials. These hierarchical biomaterials can overcome the conflicting trends in designing balanced mechanical and optical performance of chiral biofilms and their conversion to robust chiral photonic materials with enhanced performance.

中文翻译:

用于强健手性虹彩膜的多糖纳米晶体和纳米纤维的共组装。

组装稳固的手性生物聚合物结构而不损害生动的光学虹彩是生物复合材料面临的巨大挑战。在这里,我们报告了分层的纳米纤维素纳米结构,其螺旋结构由手性刚性纤维素纳米晶体(CNC)和从水解木浆中分离出来的较长纳米纤维共同组装而成。这种高度虹彩的手性纳米纤维素材料比传统的手性CNC膜坚韧得多。我们发现,混合的纳米纤维素由针状纳米晶体和非常长(长达800 nm)的柔性纤维素纳米纤维(CNF)组成。大规模分子模拟表明,由于增加了纳米晶体的长度,纳米原纤维在混合束中的共组装,通过不稳定的网络增强的动态氢键促进了机械增强。和链间纠缠。这项研究提供了一种新的策略,可以将木浆残留物转化为高附加值的光子结合多糖材料。这些分层的生物材料可以克服在设计手性生物膜的平衡机械和光学性能以及将其转化为具有增强性能的坚固手性光子材料方面的矛盾趋势。
更新日期:2020-08-05
down
wechat
bug