Electrochimica Acta ( IF 5.5 ) Pub Date : 2020-07-07 , DOI: 10.1016/j.electacta.2020.136716 Junyang Ding , Qian Sun , Li Zhong , Xian Wang , Lulu Chai , Qipeng Li , Ting-Ting Li , Yue Hu , Jinjie Qian , Shaoming Huang
Rapid deployment of renewable energy causes a significant change in environmental benefits. Thus, the transition metal-based electrocatalysts are developed to achieve efficient water splitting. Here a simple three-step method is adopted to successfully synthesize a type of hollow MOF-derived three-dimensional carbonaceous matrix that is randomly loaded with numerous FeNi3 alloy nanoparticles (NiFeC). In this work, the as-obtained NiFeC-800-5 (carbonization temperature: 800 oC; pyrolysis rate: 5 oC/min) shows an excellent oxygen evolution reaction catalytic activity in 1.0 M KOH electrolyte, with a low overpotential of 269 mV at 10 mA cm-2 and a low Tafel slope of 72 mV dec-1. Moreover, it exhibits an ultrastable durability after being electrolyzed continuously for 10 h, which is originated from these fine alloys encapsulated into the hierarchically porous carbonaceous material. Finally, we have proposed morphological and chemical changes for the NiFeC-800-5 sample, in which the solid MOF precursor will be gradually etched into the hollow morphology by the strong hydrolysis of Fe(III) ions at high temperature, and the optimal carbonization temperature and heating rate are also well investigated. Moreover, the above approach can be used to obtain other MOF derived bimetallic alloy nanoparticles encapsulated into carbon materials for the energy conversion and storage applications.
中文翻译:
空心镍有机骨架热转化成嵌入碳材料中的双金属FeNi3合金作为高效的OER电催化剂
快速部署可再生能源会极大地改变环境效益。因此,开发了基于过渡金属的电催化剂以实现有效的水分解。在这里,采用简单的三步法成功地合成了一种中空的MOF衍生的三维碳质基体,该基体随机加载了许多FeNi3合金纳米粒子(NiFeC)。在这项工作中,所获得的NiFeC-800-5(碳化温度:800 oC;热解速率:5 oC / min)在1.0 M KOH电解质中显示出优异的氧释放反应催化活性,在190 mV下的低电势为269 mV。 10 mA cm-2和低Tafel斜率dec-1为72 mV。此外,在连续电解10小时后,它具有超稳定的耐久性,它是由包裹在分层多孔碳质材料中的这些细合金产生的。最后,我们提出了NiFeC-800-5样品的形貌和化学变化,其中固态MOF前驱体将通过Fe(III)离子在高温下的强水解和最佳碳化而逐渐蚀刻成中空形态。温度和加热速率也得到了很好的研究。此外,以上方法可用于获得其他MOF衍生的双金属合金纳米粒子,这些纳米粒子被封装到碳材料中以用于能量转换和存储应用。其中,固态MOF前驱体将通过Fe(III)离子在高温下的强水解而逐渐蚀刻成中空形态,并且还研究了最佳碳化温度和加热速率。此外,以上方法可用于获得其他MOF衍生的双金属合金纳米粒子,这些纳米粒子被封装到碳材料中以用于能量转换和存储应用。其中,固态MOF前驱体将在高温下通过Fe(III)离子的强水解而逐渐蚀刻成中空形态,并且还对最佳碳化温度和加热速率进行了深入研究。此外,以上方法可用于获得其他MOF衍生的双金属合金纳米粒子,这些纳米粒子被封装到碳材料中以用于能量转换和存储应用。