当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Catalyzed Kinetic Growth in Two-Dimensional MoS2
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2020-07-02 , DOI: 10.1021/jacs.0c05057 Lingli Huang 1, 2 , Quoc Huy Thi 1, 2 , Fangyuan Zheng 3, 4 , Xin Chen 1 , Yee Wa Chu 1 , Chun-Sing Lee 1 , Jiong Zhao 3, 4 , Thuc Hue Ly 1, 2
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2020-07-02 , DOI: 10.1021/jacs.0c05057 Lingli Huang 1, 2 , Quoc Huy Thi 1, 2 , Fangyuan Zheng 3, 4 , Xin Chen 1 , Yee Wa Chu 1 , Chun-Sing Lee 1 , Jiong Zhao 3, 4 , Thuc Hue Ly 1, 2
Affiliation
It remains difficult to control the morphology of two-dimensional (2D) materials via direct chemical vapor deposition (CVD) growth. In particular, off-equilibrium (kinetic) growth may produce flakes with non-Wulff shapes (e.g., high-index edges, sym-metrical shapes, etc.), which are potentially useful, however a general controllable approach for the kinetic growth of 2D materials are currently lacking. In this work, we pushed the CVD growth of 2D MoS2 into deep kinetic regime, by using potassium chloride (KCl) as catalyst and plasma pre-treatment on growth substrates. The unprecedented non-equilibrium high-index facet-ing and unusual high-symmetry shapes in 2D materials have been realized. The growth mechanism of high-index facets is ra-tionalized based on the theory of kinetic instability on crystal surfaces. This new vapor-liquid-adatom-solid (VLAS) growth mechanism-synergistic capture of multiple vapor phase molecules by the catalyst particles on corners and the oversaturated adatom diffusion along adjacent edges can offer great opportunities for shape engineering on 2D materials. The high-quality, rapid and controllable synthesis of high-index facets (edges) and other non-Wulff shapes of 2D transition metal dichalcogenides will benefit the developments in 2D materials.
中文翻译:
二维二硫化钼催化动力学增长
通过直接化学气相沉积 (CVD) 生长来控制二维 (2D) 材料的形态仍然很困难。特别是,非平衡(动力学)生长可能会产生具有非沃尔夫形状(例如,高指数边缘、对称形状等)的薄片,这可能是有用的,但是对于动力学生长的一般可控方法目前缺乏二维材料。在这项工作中,我们通过使用氯化钾 (KCl) 作为催化剂和等离子体对生长基底进行预处理,将 2D MoS2 的 CVD 生长推向深度动力学状态。二维材料中前所未有的非平衡高指数刻面和不寻常的高对称形状已经实现。基于晶体表面动力学不稳定性理论合理化了高指数小平面的生长机制。这种新的气-液-吸附原子-固体 (VLAS) 生长机制——通过角落上的催化剂颗粒和沿相邻边缘的过饱和吸附原子扩散对多个气相分子的协同捕获可以为二维材料的形状工程提供巨大的机会。二维过渡金属二硫属化物的高指数小面(边缘)和其他非沃尔夫形状的高质量、快速和可控合成将有利于二维材料的发展。
更新日期:2020-07-02
中文翻译:
二维二硫化钼催化动力学增长
通过直接化学气相沉积 (CVD) 生长来控制二维 (2D) 材料的形态仍然很困难。特别是,非平衡(动力学)生长可能会产生具有非沃尔夫形状(例如,高指数边缘、对称形状等)的薄片,这可能是有用的,但是对于动力学生长的一般可控方法目前缺乏二维材料。在这项工作中,我们通过使用氯化钾 (KCl) 作为催化剂和等离子体对生长基底进行预处理,将 2D MoS2 的 CVD 生长推向深度动力学状态。二维材料中前所未有的非平衡高指数刻面和不寻常的高对称形状已经实现。基于晶体表面动力学不稳定性理论合理化了高指数小平面的生长机制。这种新的气-液-吸附原子-固体 (VLAS) 生长机制——通过角落上的催化剂颗粒和沿相邻边缘的过饱和吸附原子扩散对多个气相分子的协同捕获可以为二维材料的形状工程提供巨大的机会。二维过渡金属二硫属化物的高指数小面(边缘)和其他非沃尔夫形状的高质量、快速和可控合成将有利于二维材料的发展。