当前位置: X-MOL 学术Int. J. Hydrogen Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrodeposited graphene hybridized graphitic carbon nitride anchoring ultrafine palladium nanoparticles for remarkable methanol electrooxidation
International Journal of Hydrogen Energy ( IF 8.1 ) Pub Date : 2020-07-01 , DOI: 10.1016/j.ijhydene.2020.05.273
Difan Fang , Liming Yang , Guang Yang , Genping Yi , Yufa Feng , Penghui Shao , Hui Shi , Kai Yu , Deng You , Xubiao Luo

Exploiting high performance electrocatalysts is crucial for the effective electrooxidation of methanol, although some barriers exist. Herein, we develop a hybrid support composed of graphitic carbon nitride (g-C3N4) and reduced graphene oxide (rGO) synergistically anchoring sufficient ultrafine palladium (Pd) nanoparticles via a simple one-step electrodeposition technique. The morphology and structure were characterized by scanning/transmission electron microscopy, X-ray diffraction, Raman spectroscopy and X-ray photoelectron spectroscopy, which confirmed that the Pd nanoparticles were massively and uniformly dispersed on the support of g-C3N4@rGO with a the average particle size of 5.87 nm, deriving from the nitrogen in g-C3N4 contributing to the electron transport highway on the rGO nanosheet layer surface. Furthermore, electrochemical results suggested that the Pd/g-C3N4@rGO showed a high electrocatalytic efficiency for methanol oxidation with a high current density reached 0.131 mA cm−2. Based on a novel approach to the g-C3N4@rGO hybrid nanostructure, this work offers a promising method for the design and synthesis for the superior performance methanol electrocatalyst.

中文翻译:


电沉积石墨烯杂化石墨氮化碳锚定超细钯纳米颗粒,用于卓越的甲醇电氧化



利用高性能电催化剂对于甲醇的有效电氧化至关重要,尽管存在一些障碍。在此,我们开发了一种由石墨氮化碳 (g-C3N4) 和还原氧化石墨烯 (rGO) 组成的混合载体,通过简单的一步电沉积技术协同锚定足够的超细钯 (Pd) 纳米颗粒。通过扫描/透射电子显微镜、X射线衍射、拉曼光谱和X射线光电子能谱对其形貌和结构进行了表征,证实了Pd纳米颗粒在g-C3N4@rGO载体上大量均匀地分散,平均粒径为5.87 nm,来源于g-C3N4中的氮,有助于rGO纳米片层表面的电子传输高速公路。此外,电化学结果表明,Pd/g-C3N4@rGO 显示出高电催化甲醇氧化效率,高电流密度达到 0.131 mA cm-2。基于一种新颖的 g-C3N4@rGO 杂化纳米结构方法,这项工作为高性能甲醇电催化剂的设计和合成提供了一种有前途的方法。
更新日期:2020-07-01
down
wechat
bug