当前位置:
X-MOL 学术
›
J. Chem. Theory Comput.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Graphics Processing Unit-Accelerated Semiempirical Born Oppenheimer Molecular Dynamics Using PyTorch.
Journal of Chemical Theory and Computation ( IF 5.7 ) Pub Date : 2020-07-01 , DOI: 10.1021/acs.jctc.0c00243 Guoqing Zhou 1 , Ben Nebgen 2 , Nicholas Lubbers 2 , Walter Malone 2 , Anders M N Niklasson 2 , Sergei Tretiak 2
Journal of Chemical Theory and Computation ( IF 5.7 ) Pub Date : 2020-07-01 , DOI: 10.1021/acs.jctc.0c00243 Guoqing Zhou 1 , Ben Nebgen 2 , Nicholas Lubbers 2 , Walter Malone 2 , Anders M N Niklasson 2 , Sergei Tretiak 2
Affiliation
A new open-source high-performance implementation of Born Oppenheimer molecular dynamics based on semiempirical quantum mechanics models using PyTorch called PYSEQM is presented. PYSEQM was designed to provide researchers in computational chemistry with an open-source, efficient, scalable, and stable quantum-based molecular dynamics engine. In particular, PYSEQM enables computation on modern graphics processing unit hardware and, through the use of automatic differentiation, supplies interfaces for model parameterization with machine learning techniques to perform multiobjective training and prediction. The implemented semiempirical quantum mechanical methods (MNDO, AM1, and PM3) are described. Additional algorithms include a recursive Fermi-operator expansion scheme (SP2) and extended Lagrangian Born Oppenheimer molecular dynamics allowing for rapid simulations. Finally, benchmark testing on the nanostar dendrimer and a series of polyethylene molecules provides a baseline of code efficiency, time cost, and scaling and stability of energy conservation, verifying that PYSEQM provides fast and accurate computations.
中文翻译:
图形处理单元使用PyTorch加速半经验出生的Oppenheimer分子动力学。
基于半经验量子力学模型,使用PyTorch的PYSEQM,提出了Born Oppenheimer分子动力学的新的开源高性能实现。PYSEQM旨在为计算化学研究人员提供基于开源,高效,可扩展且稳定的基于量子的分子动力学引擎。特别是,PYSEQM支持在现代图形处理单元硬件上进行计算,并且通过使用自动微分功能,提供了用于使用机器学习技术进行模型参数化的接口,以执行多目标训练和预测。描述了已实现的半经验量子力学方法(MNDO,AM1和PM3)。其他算法包括递归费米算子扩展方案(SP2)和扩展的Lagrangian Born Oppenheimer分子动力学,可进行快速仿真。最后,对纳星型树状大分子和一系列聚乙烯分子的基准测试提供了代码效率,时间成本以及节能的规模和稳定性的基准,证明了PYSEQM提供了快速而准确的计算。
更新日期:2020-08-11
中文翻译:
图形处理单元使用PyTorch加速半经验出生的Oppenheimer分子动力学。
基于半经验量子力学模型,使用PyTorch的PYSEQM,提出了Born Oppenheimer分子动力学的新的开源高性能实现。PYSEQM旨在为计算化学研究人员提供基于开源,高效,可扩展且稳定的基于量子的分子动力学引擎。特别是,PYSEQM支持在现代图形处理单元硬件上进行计算,并且通过使用自动微分功能,提供了用于使用机器学习技术进行模型参数化的接口,以执行多目标训练和预测。描述了已实现的半经验量子力学方法(MNDO,AM1和PM3)。其他算法包括递归费米算子扩展方案(SP2)和扩展的Lagrangian Born Oppenheimer分子动力学,可进行快速仿真。最后,对纳星型树状大分子和一系列聚乙烯分子的基准测试提供了代码效率,时间成本以及节能的规模和稳定性的基准,证明了PYSEQM提供了快速而准确的计算。